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Abstract
Wireless ad hoc and sensor networks play an important role in providing flexible 
deployment and mobile connectivity for next generation network. Since there is no 
fixed physical backbone infrastructure, some of the nodes are selected to form a vir-
tual backbone. Efficient algorithms for identifying the Minimum Connected Domi-
nating Set (MCDS) have many practical applications in wireless sensor networks 
deployment and management. We propose two algorithms in this paper for solving 
the MCDS problem. The first algorithm called Memetic Algorithm for the MCDS 
problem, or MA-MCDS shortly. This is a new hybrid algorithm based on genetic 
algorithm in addition to local search strategies for the MCDS problem. In order to 
achieve fast performance, MA-MCDS algorithm uses local search and intensifica-
tion procedures in addition to genetic operations. In the second algorithm, simulated 
annealing is used to enhance a stochastic local search with the ability to of run away 
from local solutions. In addition, we present a new objective function that effectively 
measure the quality of the solutions of our proposed algorithms. Both algorithms are 
tested using different benchmark test graph sets available in the literature, and shows 
good results in terms of solution quality.

Keywords  Minimum connected dominating set · Memetic algorithm · Simulated 
annealing · Stochastic local search · Wireless network design

1  Introduction

Minimum Dominating Sets (MDS) are minimum subsets of the nodes whose neigh-
borhoods cover the whole graph. Computing MDS is a classical graph theory prob-
lem that has been covered in the literature. Minimum Connected Dominating Set 
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(MCDS) problem is a subordinate of the original MDS problem that inspired scien-
tists and researchers in field of wireless networks. In addition, the MCDS concept 
is useful in wireless sensor network, especially large scale ones, in order to find the 
minimum-sized connected virtual backbone in those networks. Therefore, identify-
ing important nodes which compose the skeleton of the virtual backbone network is 
crucial in wireless sensor networks management [1–9]. Moreover, there are several 
application domains for the MCDS problem. For examples, it can be used as a tool 
in fault management of wireless sensor networks [10], in clustering mobile ad hoc 
networks [1], and in general network management [2, 9, 11]. The main challenge in 
such applications that their original problems, MDS and MCDS, are NP-complete 
[12, 13].

Using meta-heuristics as artificial intelligence tools have attracted researchers in 
the area of optimization recently. They cad be derived by simulating natural pro-
cesses or by triggering intelligent-learned routines [14]. Meta-heuristics use dif-
ferent techniques to avoid local minima issue. These techniques can be classified 
into three categories: point-to-point techniques, population-based techniques, and 
hybrid techniques. Simulated annealing and tabu search are examples of the first cat-
egory, while genetic algorithms and scatter search are examples of the second one. 
Memetic algorithms are example of the third category which combine techniques 
from the first two categories [15].

Simulated Annealing (SA) is a meta-heuristic based on point-to-point technique 
that has been used effectively in combinatorial problems. Its capability to get away 
from local maxima entrapment represents one of the most attractive characteristics 
of SA. It does so by moving down-hill using a probabilistic procedure particularly in 
the early stages of the search. Hence, SA has been used widely in different problems 
[16–18]. Kirkpatrick et al. introduce a form of SA that could be used to solve hard 
optimization problems [19]. It is derived from neighborhood search at which trial 
solutions are generated incrementally in the neighborhood of the current solution. 
Replacing the current solution by one of recently generated trial solutions is decided 
by SA according to a probability depending on the difference between their objec-
tive function values. In theory, a convergence to an optimal solution needs infinite 
number of iterations controlled by a cooling schedule procedure [16, 20]. Practi-
cally, a proper cooling schedule is important to behave as the asymptotic conver-
gence of the SA [21].

Genetic Algorithm (GA) is a population-based techniques has been used to solve 
hard combinatorial problems. It has been derived from the biological evolution at 
which previous solutions are used to generate successively better solutions. GA has 
been extended by using local search algorithm for each solution among generations, 
this modification to GA has been called Memetic Algorithm (MA) by Moscato in 
1989 [22]. Pastorino proved that MA is able to improve convergence time, and con-
sequently MA is more attractive than GA [23]. MA utilizes both global and local 
search by using GA to perform exploration while the local search method performs 
exploitation. This combination of global and local search inspired many researchers 
in global optimization field.

We propose two new algorithms for solving the MCDS problem. We emphasize 
the application of our two algorithm in wireless network. Specifically, the proposed 
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algorithms deduce a skeleton for a virtual backbone network through which a com-
plex wireless sensor network can be controlled and managed. These new algorithms 
presented at this paper are two new meta-heuristics called Memetic Algorithm for 
the MCDS problem (MA-MCDS), and Simulated Annealing for the MCDS problem 
(SA-MCDS). In each algorithm, we use an on/off variable representation of different 
solutions while searching for the MCDS, then a new objective function will be used 
by each algorithm to measure the quality of the solution. That objective function 
takes into consideration the size of the domination in addition to the connectivity 
at the graph and its cardinality for each solution. In addition, MA-MCDS uses both 
intensification search methods and GA search methodology. Local Search, Filtering 
Search and Elite Dominating Sets Inspiration are the intensification search methods 
used by MA-MCDS [24]. In order to achieve better results, solution connecting is 
used as well as a new mutation based on the best solution found so far and called 
BS-Mutation. The role of BS-mutation is to add some nodes gradually from the best 
obtained solutions or remove some in order to get a better comprehensive coverage 
and connectivity. MA-MCDS invokes a solution connecting procedure by connect-
ing the disconnected nodes in the obtained solution.

On the other heuristic SA-MCDS, the stochastic local search (SLS) method is 
implemented as a first step to search for local solutions near to the given solutions. 
The next step is to improve the SLS method by invoking the annealing acceptance 
which makes it possible to escape from local solutions. Also, Node-Reduction, 
Node-Addition and Node-Swapping are used to improve iterated solutions.

We compare the results of our proposed meta-heuristics against some standard 
methods from the literature. We used several instances of the MCDS problem to 
test the performance and the effectiveness of our methods. The experimental results 
show that our proposed methods generally outperform the ones tested against. More-
over, SA-MCDS shows a superior performance in obtaining better solutions within 
cheaper computational costs.

This paper is organized as follows. In the next section, we briefly give an over-
view to the MCDS problem. A description of the related research works on the 
MCDS problem is presented in Sect. 3. Section 4 presents the design of a new objec-
tive function for the MCDS problem. In Sects. 5 and 6 , we highlight the main com-
ponents of both the MA-MCDS and SA-MCDS methods and present their formal 
algorithms. The details of the proposed methods implementation and their initial 
and control parameters setting are illustrated in Sect. 7. The numerical experiments 
with the proposed methods and their comparisons against some benchmark methods 
are presented in Sect. 8. Finally, the conclusion makes up Sect. 9.

2 � Minimum Connected Dominating Set Problem

This section introduces the MCDS problem and explains the system model. Let 
G = (V ,E) be a simple undirected graph where V(G) is a set of nodes of the graph, and 
E(G) is a set of edges connecting the nodes of the graph. There is a path P of alternat-
ing consecutive sequence of nodes and edges that connects nodes u, v ∈ V(G) provided 
that no node is repeated in the path from u to v. The length of the path P is calculated 
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by the number of edges in that path. Nodes u and v are said to be connected if there is a 
path between u and v. Hence, the condition for a graph G to be connected is that every 
pair of nodes is connected. In a disconnected graph G, a connected component is a sub-
graph that is connected and cannot be part of any bigger subgraph. A graph is said to 
be itself connected if it has exactly one connected component which is the whole graph.

A dominating set in a graph is a subset of nodes D ⊆ V such that for all u ∈ V − D 
there exists a v ∈ D for which {u, v} ∈ E . Consequently, each node is either a member 
of the dominating set or an adjacent to a node that is a member to the dominating set. 
Thus, this node u is said to be covered. The MDS problem is to find a dominating set 
in a graph with minimum cardinality. The cardinality of an MDS in a graph G is called 
the domination number of G and written as �(G).

The MCDS is another important class of domination problems that has several 
applications in networks. In a connected graph G, there can be a connected dominat-
ing set that is a subgraph of G. Among all possible connected dominating sets of G, the 
one with the minimum cardinality is called the MCDS. Hence, the MCDS problem is 
to find in a graph G a MCDS. The cardinality of a MCDS of graph G is called the con-
nected domination number of G and is written as �c(G).

As it is known from the literature finding a MCDS for a given graph G is not an 
easy task because it is an NP-complete combinatorial problem [12, 13]. Therefore, 
the MCDS problem is a hard combinatorial problem and cannot be solved exactly in 
a polynomial time. Consequently, finding an efficient solution for the MCDS problem 
is always one of the major areas of research in the graph theory. Recently, the MCDS 
problem gain more attention as it is promising in connected facility locations and has 
many applications in wireless networks [2, 3, 5, 6, 25–27]. It has been studied inten-
sively in computer science and operational research [28–31].

3 � Related Work

In this section, we review the state-of-the art of theory and applications of construct-
ing the MCDS problem. The Connected Dominating Set (CDS) in a network corre-
sponding graph can form a skeleton of a virtual backbone of this network. Actually, 
the domination property of this dominating set ensures that every node is either in the 
set or adjacent to (some node in) the set. Therefore, the network connectivity property 
guarantees that any two nodes can message each other via a series of adjacent nodes 
in the set. There are many algorithms in the literature to identify important nodes (vir-
tual backbone nodes) form a connected dominating set of the wireless ad hoc networks 
[1–9, 29, 32, 33]. Beside those methods, there are several approximate and heuristic 
methods that attempts to solve the considered problem in generic ways for its general 
formulations.

3.1 � Virtual Backbone of Wireless Networks

Wireless networks such as sensor network and ad-hoc network consist of several 
wireless nodes. In general, Wireless sensor networks are deployed in many fields, 
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for example, biological, medical, military, environment monitoring and protection, 
traffic and crowd management. its physical characteristics resulted in some limita-
tions like limited storage capacity, processing speed, communication bandwidth, 
short transmission range and typically powered by batteries [34]. Recharging these 
batteries is not easy because sensors are usually deployed in awkward locations [35]. 
The absence of physical backbone network makes it difficult to control such net-
works. Hence, virtual backbone network can be a feasible solution. Basically, virtual 
backbone is a set of nodes that looks like a skeleton connecting the entire network 
together. A message can be sent from any regular node to a destination node by 
passing a message to a neighboring node that is a member of connected set. The 
major advantage of the virtual backbone is network routing and management as it 
limits the search space to the set of backbone nodes.

Messages exchange among sensor nodes depend on the architecture of the con-
structed virtual backbone. Virtual backbone construction can be achieved by com-
puting a connected minimum dominating set for sensor network nodes. Among 
important features of a connected minimum dominating set are maintenance reduc-
tion, and improving routing time [1–3, 9].

A smaller virtual backbone consume less energy, and performs the routing more 
efficiently. Hence, finding the MCDS is among important performance factor in 
wireless network routing [2, 36, 37]. Data aggregation is another example for the 
important benefit of computing MCDS in efficient data transmission in wireless sen-
sor network [26, 38]. In data aggregation, each node delay its data transmission for 
certain period of time to merge any data received from its neighbor within this time 
window with its delayed data. The drawback of data aggregation is data delayed 
delivery, this issue can be practically mitigated using minimum connected dominat-
ing set with a minimum average backbone path that work faster for data aggregation.

Yu et  al. [8, 9] proposed a mapping algorithm for the structural controllabil-
ity problem on a communication network. Their algorithm finds crucial nodes in 
sophisticated communication networks by identifying crucial links in the network 
according to the number of its close subordinates.

The multi-hop connected clustering problem for a given homogeneous wireless 
network has been simulated into computing a minimum d-hop CDS problem by Gao 
et  al. [1]. They developed a distributed approximation method named Connected 
Sparse Clustering Scheme. The first step of their algorithm is dominator selection, 
then inserting connector, and finally eliminating redundancy.

A greedy approximation algorithm for computing a MCDS in multi-hop wire-
less networks with disparate communications ranges is presented in [39] with good 
approximation ratio compared to previous work. In [40], Mohanty et al. proposed a 
distributed three-phase greedy approximation method. At this algorithm nodes store 
one-hop neighborhood information to compute the next dominators. The CDS size 
was reduced by the demotion of some existing dominators after finding CDS. Kui 
et  al. presented an energy-balanced connected dominating set distributed scheme 
that extends the network lifetime by constructing an energy-balanced connected 
dominating set for data collection [41]. Mohanty et al. [3] presented a centralized 
degree-based greedy approximation algorithm for constructing a connected dominat-
ing set in the wireless networks. CDS is constructed by selecting pseudo-dominating 
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set (PDS), then using an improved Steiner tree construction technique to connect 
PDS nodes, and finally removing redundancy in dominators within CDS. As this is a 
centralized algorithm, it does not scale well with the large number of wireless sensor 
networks. Consequently, they [2] developed a distributed version of the algorithm to 
solve the scalability and reliability problems. However they paid the cost of achiev-
ing scalability and reliability in terms of accuracy, as their centralized algorithm is 
more accurate than the distributed one.

Kim et  al. developed algorithms for constructing an energy-efficient CDS with 
limited diameter for a wireless network [38]. They presented two centralized algo-
rithms with constant performance ratios for CDS size and CDS diameter as well. 
Moreover, they developed a distributed version of one of them. All three algorithms 
are based on building a tree search algorithm, then finding a Maximum Independ-
ent SET (MIS) and finally connecting MIS nodes to form a CDS [38]. In their first 
algorithm, a CDS with a small diameter is formed by constructing a BFS tree, and 
then by connecting the root r to all the MIS nodes in tree search level by level. Con-
sequently, the maximum number of nodes between an MIS node at level i and its 
nearest MIS nodes at level i + 1 and level i + 2 has been determined. Next they com-
puted an MIS of G from which they finally get a CDS of G. In their second algo-
rithm, first an MIS is obtained, then spanning tree construction connects the MIS 
nodes. Moreover, their second algorithm uses root node’s hop-distance information 
to each node. Hence, a node in the level i + 1 is connected to another node in level 
i by adding at most one node. Consequently, the First algorithm has a larger per-
formance ratio for size and a smaller one for diameter than the second one. Their 
final algorithm is the distributed version of the second one. In addition, there are 
several energy-efficient algorithms have been investigated in the literature. In [42], 
the authors propose a distributed algorithm to find a network dominating set using 
capability function which tries to utilize memory, processing power, battery power, 
mobility ratio and computing load. Moreover, a polynomial time algorithm which 
can recursively computing minimum weighted dominating sets has been proposed in 
[43]. That algorithm respects latency and energy consumption constraints.

3.2 � Theoretical Studies

Design approximate algorithms for the MCDS problem in various graphs have 
attracted many theoretical researchers, see [29] and references therein.

Guha and Khuller [44] proposed two polynomial-time greedy and centralized 
algorithms to solve the MCDS problem for a general undirected graph. Ruan et al. 
[45] present a new one-step greedy approximation with logarithmic performance 
ratio of the maximum degree in the input graph.

Wu et al. [46] designed approximation algorithms with an improved performance 
ratio to solve the MCDS and maximal independent sets for unit disk graphs. In [47], 
an approximation algorithm is developed with an approximation ratio which is a 
fraction of the size compared to that of the approximation algorithm at worst over 
the size of the optimal solution.



www.manaraa.com

653

1 3

Journal of Network and Systems Management (2019) 27:647–687	

A generalized MCDS problem called k-hop connected dominating set is consid-
ered in [28, 48]. In this generalized problem, a node v is dominated by another node 
u if the distance between v and u is at most k. Coelho et al. [28] present an approxi-
mation algorithm for this problem for weighted and unweighted graphs.

3.3 � Heuristic Studies

Developing heuristics to construct MCDS has been the focus of many researchers on 
graph theory and artificial intelligence for many years.

Misra et al. proposed a new heuristic named collaborative cover [26]. The heu-
ristic assumes a connected graph dominating number is at least two, and subset of 
independent dominator defines optimal substructure. A partial Steiner tree is devel-
oped during the construction of the independent dominators. Steiner nodes in the 
formation of Steiner tree for the independent set of G is computed in post-processing 
step. It has been shown that collaborative cover heuristics outperform degree-based 
heuristics in computing independent set and Steiner tree.

Guha and Kuller [44] propose two centralized greedy heuristic algorithms for 
connected dominating set formation. The one node with maximum degree will 
become dominating node (dominator) at each step. Their first algorithm builds up 
the connected dominating set at one node, then restricts the searching space for the 
next dominator(s) to the current uncovered nodes. The connected dominating set 
expands until there is no uncovered nodes. In the second algorithm, all the possi-
ble dominating nodes are determined in the first stage, then intermediate nodes are 
selected to create a connected dominating set in the second stage. The implemen-
tations of both algorithms were provided by Das et al. [49], and they mention the 
maintenance of the connected dominating set if nodes have mobility. Cheng et al. 
[32], proposed a greedy algorithm for MCDS in unit-disk graphs. There algorithm is 
based on an MIS but the computed connected dominating set may not contain all the 
nodes in the MIS.

The algorithm proposed by Wu and Li computes a connected dominating set and 
then removes some redundant nodes from the CDS using two rules [50]. In phase 
one, each node is marked true (dominator) if it has two unconnected neighbors. 
Based on the first rule, a marked node can unmark itself if its neighbor set is cov-
ered by another neighboring marked node. Based on the second rule, a marked node 
can unmark itself if its neighborhood is covered by two other neighboring directly 
connected marked nodes. the combination of both rules reduce the cardinality of 
connected dominating set efficiently. In [7], Wan et al. gave the performance ratio of 
this algorithm and correct the time complexity. Raghavan et al. [4] presented a CDS 
algorithm called marking process and two backbone node-reducing rules and pro-
vided some experimental results compared with the algorithms in [51].

Several meta-heuristics algorithms have been developed to deals with the con-
sidered problem. Li et al. design a GRASP for connected dominating set problems 
[25]. Ant colony optimization algorithms for the minimum connected dominating 
set problem have been proposed in [52]. In [53], the authors proposed two popula-
tion-based methods using hybrid GA and greedy search for the minimum weighted 
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connected dominating set problem. Another GA-based method has been presented 
in [54] that utilizes the MCDS to save energy and optimize the load balanced in 
wireless networks.

4 � Solution Representation and Evaluation

In this section, a new objective function f  is presented in order to evaluate the solu-
tion quality for the MCDS. First, we describe how to represent solutions in the pro-
posed methods.

4.1 � Solution Representation

In the MA-MCDS and SA-MCDS methods, solutions are represented in binary 
forms. Specifically, a trial solution x represents a subset of nodes Vx ( ⊆ V  ), and is 
coded as a 0-1 vector with dimension equal to |V|, where |V| is the number of nodes 
in the graph. Then, each component xi of x can be defined as

for all i = 1,… , |V|.

4.2 � Solution Evaluation

During the search process, generated solutions in both methods are evaluated using 
a specified objective function f  to determine their quality. This objective function 
considers the number of nodes covered by a solution, and their connectivity and car-
dinality. The objective function can be formally defined as:

where nx is the number of nodes covered by solution x, |Cx| is the number of nodes 
contained in the largest maximal connected component Cx of x, and �x is the number 
of nodes contained in x. Moreover, three weights �1 , �2 , and �3 ( 0 ≤ �1,�2,�3 ≤ 1 , 
and �1 + �2 + �3 = 1 ) are used to trade-off between the objective function 
components.

The objective function has three terms which can be classified as follow:

•	 Coverage The first part, fCov(x) = nx∕|V| , reflects the size of domination on G by 
x. If x represents a dominating set, then this part is equal to 1.

•	 Connectivity The second part, fCon(x) = |Cx|∕�x , reflects the connectivity 
between the nodes in x. If x represents a connected set, then this part is equal to 
1.

xi =

{
1, if Vi ∈ Vx,

0, otherwise,

(1)f (x) = �1

nx

|V|
+ �2

|Cx|
�x

+ �3

|V| − �x

|V|
,
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•	 Cardinality The third part fCard(x) = (|V| − �x)∕|V| distinguishes between solu-
tions that have the same values of the first and second parts based on the number of 
nodes contained in each of them.

From the previously mentioned definitions of those three parts, the objective function 
can be reformulated as

Therefore, the considered problem is reformulated as the following maximization 
problem

where x is a binary variable of size |V|. In addition, the considered problem can be 
treated as a multi-objective optimization problem. Equations (2) and (3) convert it to 
a single-objective optimization problem using the weighted sum method [55]. The 
main challenge of such problem reformulation is how to control and tune the objec-
tive weights. During designing and implementing the proposed methods, special 
attention has been given first to achieve the graph coverage and solution connectiv-
ity, then trying to reduce the solution cardinality.

For wireless and ad hoc networks fault tolerance, routing and deployment issues, 
this objective function can be extended by adding more objectives. For example, we 
can add new weighted terms that reflects the energy saving by reducing the solution 
diameters, and the fault tolerance by reducing the node degrees in solutions.

5 � Memetic Algorithm for the MCDS Problem

In this section, a memetic-based method called MA-MCDS is designed to solve the 
considered problem. Like other genetic-based algorithms, MA-MCDS starts with a 
well-distributed random population of solutions or individuals. Then, the previously 
defined objective function is repeatedly called in order to estimate the fitness of the 
initial population individuals and to rank them. At each generation of the MA-MCDS 
method, an intermediate population of parents is selected from the current population 
individuals based on their fitness. Then, three genetic operators; crossover, mutation 
and survival selection, are applied in order to reproduce the next generation popula-
tion. The MA-MCDS method invokes three more improvement operators; local search, 
filtering and solution connecting, in order to improve and refine the generated solu-
tions in each generation. Finally, a final intensification mechanism is applied in order 
to enhance the best obtained solutions before terminating the search process. In the fol-
lowing subsections, we describe components and operators of the MA-MCDS method 
before formally presenting the algorithm.

5.1 � Genetic Operations

For the main genetic operations, the MA-MCDS uses linear ranking selection 
[56], and the standard one-point crossover and uniform mutation [57]. Beside the 

(2)f (x) = �1fCov(x) + �2fCon(x) + �3fCard(x).

(3)max f (x),
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standard mutation operation, MA-MCDS invokes another special type of mutation 
which is called the best solution (BS) mutation [58]. MA-MCDS uses BS-mutation 
to refine the best solution xbest by adding nodes gradually to xbest in order to achieve 
the required coverage fCov and connectivity fCon in Eq. (2). Moreover, BS-mutation 
also detects and removes redundant nodes contained in xbest to eventually obtain a 
small size fCard in Eq. (2). Using this type of mutation, a new mutated child can be 
computed through the following procedure.

Procedure 1  BS − mutation(xbest) 

1.	 Set xnew = xbest.
2.	 If fCov(xbest) < 1 , go to Step 3. Otherwise, go to Step 5.
3.	 Randomly select a component xnew

i
 with value 0, and set it to 1.

4.	 If fCov(xnew) > fCov(x
best) , then set xbest = xnew , and go to Step 7.

5.	 Randomly select a component xnew
i

 with value 1, and set it be 0.
6.	 If fCov(xnew) > fCov(x

best) , then set xbest = xnew.
7.	 If fCon(xbest) < 1 , use Procedure 4 to increase the connectivity of xbest.
8.	 Update xbest , and return.

5.2 � Intensification Schemes

The main features of intelligent search methods are their abilities to perform wide 
exploration and deep exploitation mechanism. Even if such exploration and exploi-
tation mechanisms are well-defined, it is still challenging to apply them in appro-
priate time to avoid premature convergence and unnecessary search generations. 
MA-MCDS invokes four intensification mechanisms, Local Search [24, 58], Filter-
ing Search [24, 58], Solution Connecting [58] and Elite Inspiration [58] in order to 
achieve a faster and a better performance.

5.2.1 � Local Search

Local Search is an intensification mechanism that adds or deletes some nodes in 
order to improve a given solution x, and this process is repeated nl times. The details 
of this mechanism are formally stated in Procedure 2.

Procedure 2  LocalSearch(x) 

1.	 Repeat the following steps nl times.
2.	 Set x̃ = x.
3.	 If fCov(x̃) = 1 , randomly select a component x̃i with value 1. The selection prob-

ability of a component is inversely proportional to the degree of the corresponding 
node. Set x̃i = 0 , and go to Step 5.
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4.	 If fCov(x̃) < 1 , randomly select a component x̃i with value 0. The selection prob-
ability of a component is proportional to the degree of the corresponding node. 
Set x̃i = 1.

5.	 If f (x̃) > f (x) , set x = x̃ , and return.

5.2.2 � Filtering Search

Filtering Search is another intensification search mechanism. Filtering Search aims 
to refine the best solution xbest found so far, if exists. If xbest represents a dominating 
set, then Filtering Search filters xbest by eliminating some of unnecessary nodes con-
tained in it. Therefore, this mechanism tries to reduce the cardinality of the solution 
represented by xbest without losing its coverage property. The formal description of 
the Filtering Search mechanism is given in the following procedure.

Procedure 3  Filtering(xbest)

1.	 If fCov(xbest) < 1 , return.
2.	 Compute the set � = {�1,… , �|�|} of all positions of a value one in xbest.
3.	 Set xtrial = xbest.

4.	 Repeat the following Steps 5-6 for j = 1,… , |�|.
5.	 Set xtrial

�j
= 0 , and compute f (xtrial).

6.	 Update xbest to be equal to xtrial if f (xtrial) > f (xbest).

It is worthwhile to mention that the selection of the first removed node in Proce-
dure 3 may influence the selection of the subsequent nodes to be removed. There-
fore, set � of all positions of a value one in xbest is randomly ordered to give more 
varieties in nodes removal. As this procedure is called several times within the main 
designed meta-heuristics, this gives a high possibility to have different updates of 
xbest.

5.2.3 � Solution Connecting

Solution connecting is another search mechanism which aims to increase the con-
nectivity between nodes in a solution. Specifically, Solution Connecting mechanism 
tries to compose a new connected set using a minimal number of nodes existing 
in the best solution xbest if it is not connected. First, Solution Connecting finds a 
component C which is the largest maximal connected component in xbest . Then, all 
nodes remaining in other components in xbest are denoted as set C′ . Solution Con-
necting tries to find the shortest path to connect any two nodes � and � ′ , where 
� ∈ C and � ∈ C� . Hence, all intermediate nodes along the shortest path � from � to 
� ′ are added to xbest . The formal description of the Solution Connecting mechanism 
is stated in Procedure 4.
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Procedure 4  SolutionConnecting(xbest)

1.	 Set C equal to the set of nodes involved in the largest maximal connected com-
ponent in xbest , and set C′ equal to set of the other nodes involved in other com-
ponents in xbest.

2.	 If |C�| = 0 , return.
3.	 Set xtrial = xbest.

4.	 Randomly select a node � ∈ C , and � � ∈ C�.
5.	 Find the shortest path �(� , � �) from � to � ′ , and add all intermediate nodes in 

�(� , � �) to xtrial.
6.	 Update xbest to be equal to xtrial if f (xtrial) > f (xbest).

It is worthwhile to mention that achieving solution connectivity starting from 
the largest maximal connected component is faster than achieving it by connecting 
smaller size components. The latter connecting mechanism may have better graph 
coverage, however the objective function considers the coverage and connectivity 
as two different terms. Moreover, the invoked search processes try to keep and/or 
increase the solution coverage using different mechanisms. Another implementation 
issue of Procedure 4 is to what extend we need to derive some rule to select which 
node pairs should be evaluated first in Step 4. Actually, this procedure is called sev-
eral times within the main designed meta-heuristics. Therefore, the best solution 
xbest which usually survives over iterations has many chances to be updated using 
different choices of connecting pairs.

5.2.4 � Elite Inspiration

As a final intensification mechanism, the MA-MCDS method invokes a search 
procedure called Elite Inspiration. In order to find a MCDS, the best nDS solutions 
found so fare are saved in a set called Dominating Set ( DS ). A new trial solution 
xCore is initialized as the intersection of the nCore best solutions saved in DS , where 
nCore is a pre-specified number. If the cardinality of the solution represented by xCore 
is less than that in xbest by at least two, then the zero position in xCore which is related 
to the node with a maximum degree is updated to be one. This step is repeated until 
the number of nodes involved in xCore becomes less than that in xbest by one, or a bet-
ter MCDS is found.

Procedure 5  [xCore] = EliteInspiration(DS, nCore)

1.	 If DS is empty, then return.
2.	 Set nF equal to the number of nodes involved in xbest , and set xCore equal to the 

intersection of the nCore solutions in DS.
3.	 If 

∑�V�
i=1

xCore
i

< nF − 1 , then go to Step 4. Otherwise, return.
4.	 If fCov(xCore) = 1 and fCon(xCore) = 1 , then return.
5.	 Update the zero position in xCore which gives the highest fitness, and go to Step 

3.
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5.3 � MA‑MCDS Algorithm

The main structure of MA-MCDS is shown in Fig.  1. MA-MCDS starts with an 
initial population of � chromosomes. Each individual in the population represents 
a trial solution to the MCDS problem. In order to evaluate and rank chromosomes 
in a population, a fitness function based on the objective function f  (see Eq. (1) and 
Eq.(2)) is implemented. Three operators must be specified to construct the complete 
structure of the GA procedure; selection, crossover and mutation operators beside 
the four intensification schemes. MA-MCDS applies Local Search, Procedure  2, 
to improve the trial solutions. Then, in each generation the population is updated 
through the genetic operators. Specifically, good individuals are selected based on 
the linear ranking selection [56] in order to be used by other operators: crossover 
and mutation. MA-MCDS invokes the standard one-point crossover and uniform 
mutation [57], as well as Local Search Procedure to update the current population. 
Whenever a new better solution xbest is found, MA-MCDS invokes Filtering Search 
in order to improve it. Moreover, MA-MCDS applies Procedure 4 to interconnect 
the disconnected nodes in xbest to increase the connectivity between nodes in xbest . 

Fig. 1   MA-MCDS flowchart
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The search may be terminated if number of generations exceeds gmax . Finally, the 
Procedure 5 is applied as a final intensification mechanism. The detailed structure of 
MA-MCDS is presented in the following formal algorithm.

Algorithm 6  MA-MCDS 

1. Initialization.	� Set values of � , gmax , nCore , nl . Set the 
crossover and mutation probabilities 
pc ∈ (0, 1) and pm ∈ (0, 1) , respectively. 
Set DS to be an empty set. Generate an 
initial population P0 of size �.

2. Fitness Evaluation & Local Search.	� Evaluate the fitness function of all indi-
viduals in P0 by using the Eq. (1), and 
then apply Local Search (Procedure 2) to 
improve the trial solutions in P0 . Set the 
generation counter t = 0.

3. Parent Selection.	� Select an intermediate population P′
t
 from 

the current population Pt using the linear 
ranking selection.

4. Crossover.	� Apply the standard one-point crossover 
to chromosomes in P′

t
 , and update P′

t
.

5. Mutation.	� Apply the standard uniform mutation to 
chromosomes in P′

t
.

6. Fitness Evaluation.	� Evaluate the fitness function of all gener-
ated children in the updated P′

t
.

7. BS-Mutation.	� Apply the BS-mutation described in Pro-
cedure  1 on the best solution in P′

t
 , and 

update it.
8. Survival Selection.	� Set Pt+1 = P�

t
 . If the best solution in Pt+1 

is worse than the best solution in Pt , then 
replace the worst solution in Pt+1 by the 
best solution in P′

t
.

9. Local Search.	� Apply Local Search (Procedure  rm 2) 
starting from each individual in Pt+1 in 
order to improve them, update DS and 
xbest.

10. Filtering Search.	� If xbest represents a dominating set, then 
apply Filtering Search (Procedure 3) in 
order to reduce its cardinality, and update 
DS and xbest.

11. Connecting.	� Apply Procedure  4 on xbest to increase 
the connectivity between nodes in xbest , 
update DS and xbest.
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12. Stopping Condition.	� If termination condition is satisfied, then 
go to Step 13. Otherwise, set t = t + 1 , 
and go to Step 3.

13. Final Intensification.	� Apply Procedure 5 to obtain xCore . 
Update DS by xCore if a better solution is 
found, and terminate.

6 � Simulated Annealing for the MCDS Problem

In this section, we present the SA-MCDS method to solve the MCDS problem 
addressed in this research. First, we introduce a simple search procedure called 
the Stochastic Local Search (SLS) [59] which updates an input solution by adding, 
deleting and/or swapping the nodes contained in this solution in a stochastic way. 
Then, the SA-MCDS method globalizes the SLS procedure using the annealing 
acceptance and cooling schedule concepts. In the following, we give a description of 
the SLS procedure, then we show how it can be enhanced by the simulated anneal-
ing methodology.

6.1 � Stochastic Local Search

In this section, we use the SLS method [59] for the MCDS problem. The idea of the 
SLS is to improve a solution by altering its nodes. First, we try to improve the solu-
tion quality by adding or deleting some nodes. If no improvement could be achieved, 
we exchange some of the solution nodes with other nodes. Specifically, if the cur-
rent solution x represents a connected dominating set, then SLS tries to improve it 
by reducing its cardinality. This can be achieve by removing a node with a small 
degree from the node set represented by x. On the other hand, if x dose not represent 
a dominating set, then SLS tries to increase the solution coverage by adding a new 
node with a high degree. Another possibility to improve x is to exchange one node 
with small degree contained in x with another one with a high degree from the nodes 
that are not contained in x. The processes of removing, adding and replacing nodes 
are done in a probabilistic manner. The formal description of the SLS is shown in 
Procedure 7.

Procedure 7  Stochastic Local Search(x) 

1.	 Set x̀ = x.
2.	 If fCov(x̀) = 1 , then go to Step 3. Otherwise, go to Step 4.
3.	 Select a component x̀i with value 1 randomly with a probability inversely propor-

tional to the degree of its corresponding node. Set x̀i = 0 , and go to Step 6.
4.	 Select a component x̀i with value 0 randomly with a probability proportional to 

the degree of its corresponding node. Set x̀i = 1.
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5.	 If fCov(x̀) < fCov(x) , then select a component x̀j with value 1 as in Step 3 and a 
component x̀k with value 0 as in Step 4, and swap their values, i.e., x̀j = 0, x̀k = 1.

6.	 If f (x̀) ≤ f (x) , then stop. Otherwise, set x = x̀ , and go to Step 1.

6.2 � SA‑MCDS Algorithm

In this section, the details of the second proposed method which is called the SA-
MCDS method are explained. As a point-to-point method, SA-MCDS starts with 
an initial solution which can be randomly chosen from the search space. The SA-
MCDS search process tries to select trial solutions in the neighborhood of the cur-
rent solution by adding a random displacements to the latter. Then, the objective 
function defined by Eq. (1) is used to evaluate the quality of both solutions. A move 
can be certainly accepted if the new solution has a better objective value than that 
of the current one. Otherwise, the move is accepted with a probability depending 
on the difference between the objective function values. Thereby, a worse trial solu-
tion can be accepted with the probability p = exp(

�f

T
) ; where �f  is the amount of 

the decrease in the objective value caused by the downhill move and T is a control 
parameter called the “annealing temperature”. This parameter T is used to control 
the acceptance of inferior trial solutions. At the start of a search the temperature 
is initialized to be Tmax which should be high enough to allow almost unrestricted 
movement around the search space. The temperature Tmax is gradually reduced 
during the search constraining the acceptance of inferior trial solutions. This tem-
perature reduction process is called the “cooling schedule,” and it continues until T 
reaches the lower limit temperature Tmin.

SA-MCDS follows the above-mentioned framework of SA as shown in Fig.  2 
with some modifications. Therefore, an initial solution x0 is randomly selected in the 
search space. In each iteration k, a trial solution y is generated in the neighborhood 
of the current iterate solution xk . This generation process is done through the follow-
ing cases.

•	 If xk represents a dominating set (i.e., fCov(xk) = 1 ), then y is generated in the 
manner that reduces the cardinality of xk as in Step 3 of SLS Procedure 7. This 
generation process is called “Node-Reduction”.

•	 If xk does not represent a dominating set (i.e., fCov(xk) < 1 ), then y is generated in 
the manner that increases the number of nodes covered by xk as in Step 4 of SLS 
Procedure 7. This generation process is called “Node-Addition”.

•	 If the Node-Addition process fails to improve f (xk) , then another process called 
“Node-Swapping” is applied as in Step 5 of SLS Procedure 7.

In these generation processes, the annealing acceptance mechanism is applied in 
order to accept or reject the generated trial solution y. These steps are repeated 
M times, where M is the epoch length [20]. At the end of each epoch, Procedure 
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4 is recalled in order to increase the connectivity of the final solution obtained 
in this epoch. The formal description of SA-MCDS is stated in the following 
algorithm.

Fig. 2   SA-MCDS flowchart
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Algorithm 8  SA-MCDS 

1. Initialization. Choose the cooling schedule parameters: initial temperature 
Tmax , final temperature Tmin , cooling ratio � ∈ (0, 1) , and the epoch length M. Set 
T = Tmax , and generate an initial solution x0 . Set xbest = x0 , and k = 0.
2. Evaluation. Evaluate f (xk) using Eq. (1).
3. Main Loop. Repeat the following Steps (3.1–3.5) M times.

3.1. Set y = xk . If fCov(xk) = 1 , then go to Step 3.2. Otherwise, go to Step 3.3.
3.2. Node-Reduction.

3.2.1. Randomly select a component yi with value 1 as in Step 3 of SLS Pro-
cedure 7, set yi = 0.

3.2.2. If f (y) > f (xk) , set xk+1 = y , update xbest , set k = k + 1 , and go to Step 
4.

3.2.3. The trial solution y is accepted with probability p = exp(�f∕T) , where 
�f = f (y) − f (xk).

3.2.4. If y is accepted, then set xk+1 = y . Otherwise, set xk+1 = xk.
3.2.5. Set k = k + 1 , and go to Step 4.

3.3. Node-Addition.

3.3.1. Randomly select a component yi with value 0 as in Step 4 of SLS Pro-
cedure 7, set yi = 1.

3.3.2. If f (y) > f (xk) , set xk+1 = y , update xbest.
3.3.3. Set k = k + 1 , and go to Step 4.

3.4. Node-Swapping.

3.4.1. Set z = xk , and randomly swap a component zi with value 1 with a com-
ponent zj with value 0 as in Step 5 of SLS Procedure 7, i.e., zi = 0, zj = 1.

3.4.2. If f (z) > f (xk) , then set xk+1 = z , update xbest , set k = k + 1 , and go to 
Step 4.

3.4.3. The trial solution z is accepted with probability p = exp(�f∕T) , where 
�f = f (z) − f (xk).

3.4.4. If z is accepted, then set xk+1 = z . Otherwise, set xk+1 = xk.
3.4.5. Set k = k + 1.

3.5. Epoch Length Condition. If the epoch length M is attained, then go to Step 
4. Otherwise, apply Solution Connecting (Procedure 4) to improve xk , update xbest , 
and go to Step 3.1.

4. Stopping Condition. If T > Tmin , then set T = �T  , and go to Step 3. Other-
wise, terminate.

7 � Experimental Setup

In this section, we evaluate both MA-MCDS and SA-MCDS algorithms. To com-
pare the performance of our algorithms against several reference algorithms, we 
used several test graph from the literature [4, 25, 52, 60].



www.manaraa.com

665

1 3

Journal of Network and Systems Management (2019) 27:647–687	

We implemented our proposed MA-MCDS and SA-MCDS algorithms in MAT-
LAB. Each MATLAB code was run 20 times with different initial solutions and 
results of 20 runs for each algorithm were averaged. We present the experimental 
test graphs and parameter values setting of our algorithms before results discussion.

7.1 � Test Problems

Two different groups of test problems for the MCDS problem were performed. In the 
first group, test graphs have examples with 400 and 800 nodes and we named this group 
by “Test Graphs”. The other group of graphs are related to network design graphs with 
10–400 nodes and is denoted by “Network Graphs”. The number of instance graphs 
that we generated are 28 and 60 ones for the test and network graphs, respectively.

7.1.1 � Test Graphs

We adopted a referenced test graph construction procedure explained in [60]. To add 
a connectivity property on the dominating nodes, some modifications has been done 
to the original procedure. The modified procedure generates graphs with specific 
connected domination numbers and densities. The graph density p is equal to the 
number of edges in the graph divided by the maximum number of edges in a graph 
with the same number of nodes. This maximum number of edges is equal to 
n(n − 1)∕2 for an n nodes’ undirected graph. We used a generation procedure similar 
to that presented in [60] to produce test graphs Gn

p,d
 , where d is the connected domi-

nation number. V is the set of nodes, and |V| = n . For each graph, we generated a 
number of problem instances according to density parameter (p) and connected 
domination number parameter (d) as shown in the 3-rd column and the 4-th column 
in Table  1. Initially, V is partition into d nonempty subsets V1,V2,… ,Vd . Nodes 
xi, yi ∈ Vi for each i = 1,… , d , ( xi and yi do not need to be distinct) are chosen. Then 
we have the set X = {x1, x2,… , xd} , add edges joining each disconnected node xi in 
X to another node in X in order to connect X. Finally, additional edges are added to 
get the required density, at the same time making sure that yi is not connected to any 
node not in Vi , for i = 1,… , d . This constraint guarantees that the connected 

Table 1   Test problems

Test graphs No. of nodes Density (p) Connected domination no. (d) No. of 
Problem 
instances

G400

0.1,d
400 0.1 8, 11, 14, 18, 23 5

G400

0.3,d
400 0.3 3, 5, 8, 11, 14 5

G400

0.5,d
400 0.5 3, 5, 8, 11 4

G800

0.1,d
800 0.1 8, 11, 14, 18, 22, 26 6

G800

0.3,d
800 0.3 3, 5, 9, 13 4

G800

0.5,d
800 0.5 3, 6, 9, 12 4
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domination number of the graph is equal to d. Problem instances for each graph is 
shown in the last column in Table 1. To be more specific, we obtained 28 problem 
instances form graphs G400

p,d
 and G800

p,d
.

7.1.2 � Network Graphs

We used graph generation method available in the literature to generate random 
graphs, see [4]. Graph nodes N are randomly deployed to a fixed area of 100 × 100 . 
Next, the mobile nodes’ transmission range r is set to three different values: 25, 50, 
75. First we set the transmitter range r to 25, and we increase the number of mobile 
nodes N from 20 to 100 with a step of 20. Then we set r to 50, and increase N from 
10 to 80 with a step of 10. Finally, r is set to 75, and N is increased from 10 to 60 
with a step of 10. As the density of generated graphs is directly proportional to the 
mobile nodes’ transmission range, we can control the density of generated graphs. 
thus, we can conclude that there is a link between two nodes if the distance between 
them is less than r.

Another group of network graphs is given as ad hoc network clustering instances 
which are described in Table 2, see [52]. In which, 8 different network instances are 
used; all of them occupy the same area with different number of nodes N for each 
instance starting from 80 up to 400 nodes. Also, we run experiments for each net-
work size with the shown transmission ranges r. Thus, we covered different sizes of 
networks in our experiments.

7.2 � Parameters Setting

We set the initial values of control parameters according to our numerical experi-
ments or according to known common settings in the literature. Parameters’ tuning 
process final values could have a positive impact on the two proposed algorithms’ 
efficiency. Consequently, parameters’ tuning process is discussed in this section.

Table 2   Ad hoc network 
clustering instances [52]

Network Area ( L × L) No. of nodes (N) Range (r)

Net1 400 × 400 80 60–120

Net2 600 × 600 100 80–120

Net3 700 × 700 200 70–120

Net4 1000 × 1000 200 100–160

Net5 1500 × 1500 250 130–160

Net6 2000 × 2000 300 200–230

Net7 2500 × 2500 350 200–230

Net8 3000 × 3000 400 210–240
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7.2.1 � MA‑MCDS Parameters

Table  3 shows all parameters used in MA-MCDS associated with their values. 
Parameters’ values are set according to our numerical experiments or according to 
known common settings in the literature. MA-MCDS parameters are categorized 
into four groups:

•	 The Population Parameter: � is the population size.
•	 The GA operator Parameters: pc and pm are crossover probability and mutation 

probability, respectively.
•	 The Intensification Parameters: nl is the number of nodes to apply Local Search , 

nDS is the maximum number of the best solutions used to update DS, and nCore is 
the certain number of the nDS best solutions used to compute xCore.

•	 the Termination Parameter: gmax is the maximum number of generations.

We used different values of these parameters to test MA-MCDS performance. 
Initially, the population size � was set to 40. The preliminary numerical experiments 
showed that this setting was enough to obtain the best solution during search process 
in the most of runs. The value of crossover probability pc is set to 0.8 and the value 
of mutation probability pm is set to 0.05 improve the initial population. The numbers 
nl , nDS and nCore used in the Local Search and the best connected dominating sets 
are set equal to 2, 10 and 3, respectively, which help MA-MCDS to improve the 
best connected dominating set found so far. The preliminary numerical experiments 
showed that these settings were reasonable to filter the elite dominating set found so 
far. Finally, the maximum number gmax of generations is set to be equal to 100. The 
preliminary numerical experiments showed that this setting was enough to avoid 
premature termination.

7.2.2 � SA‑MCDS Parameters

Parameters set up of SA-MCDS algorithm will be discussed in this section to wrap-
up the algorithm description stated in Sect.  6. Parameters’ values are set either 

Table 3   The MA-MCDS parameters

Parameter Definition Value

� Population size 40
pc Crossover probability 0.8
pm Mutation probability 0.05
nl Number of iterations in Local Search 2
nDS Max number of the best solutions used to update DS 10
nCore The number of the best solutions used to compute xCore 4
gmax Max number of generations 100
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according to our numerical experiments or according to known common settings in 
the literature. SA-MCDS parameters and their definitions are presented in Table 4.

SA-MCDS parameters are divided into two categories:

•	 Cooling schedule A large value is assigned to the initial temperature Tmax to let 
the initial probability of accepting transition close to 1. in addition to the initial 
solution x0 , another solution y is generated in a neighborhood of x0 to calculate 
Tmax as shown in [17, 21]. Therefore, Tmax is given by: 

 The temperature is reduced with the cooling ratio � which usually is assigned 
a value from the interval [0.9,  0.99]. We assigned 0.95 to � as recommended 
in [21]. The epoch length M is set to 15. The epoch length M represents num-
ber of trials allowed at each temperature. Increasing its value has no significant 
improvement on the quality of the obtained solutions, on the other hand decreas-
ing its value has an impact on solutions’ quality.

•	 Termination criterion The termination criterion of SA-MCDS algorithm is 
intended to reflect the progress of this algorithm. So, it is terminated when the 
cooling schedule is completed. The cooling schedule is terminated when the tem-
perature decreases to a predefined minimum temperature Tmin . As an observation, 
we noticed that setting Tmin equal to min(10−7, 10−10Tmax) could give a complete 
cooling schedule. Hence, the acceptance probability at the end is almost zero.

7.2.3 � Objective Function Weights

The performance of the objective function with different values of the weights �1 , 
�2 and �3 has been studied. The following settings are tested in order to choose the 
best setting of the objective function weights.

•	 Weights setting 1: �1 = 0.2 , �2 = 0.4 , �3 = 0.4.
•	 Weights setting 2: �1 = 0.4 , �2 = 0.2 , �3 = 0.4.
•	 Weights setting 3: �1 = 0.4 , �2 = 0.4 , �3 = 0.2.
•	 Weights setting 4: �1 = 0.3 , �2 = 0.3 , �3 = 0.4.
•	 Weights setting 5: �1 = 0.3 , �2 = 0.4 , �3 = 0.3.
•	 Weights setting 6: �1 = 0.4 , �2 = 0.3 , �3 = 0.3.

Tmax = −
1

ln(0.9)
|f (y) − f (x0)|.

Table 4   The SA-MCDS 
parameters

Parameter Definition Value

M Epoch length 15
� Cooling ratio 0.95
Tmax Initial temperature Tmax = −

1

ln(0.9)
|f (y) − f (x0)|

Tmin Final temperature min(10−7, 10−10Tmax)
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Different measures have been presented in Fig. 3 in order to analyze the performance 
of the objective function using 8 different network graphs. These measures are:

•	 The number of generations or iterations in which the graph coverage was 
achieved.

•	 The number of generations or iterations in which the connectivity of the best 
solution was achieved.

•	 The approximate domination numbers obtained by the proposed algorithms 
using the different weight settings.

Figure 3 shows that changes of the parameters values weight are not much sensitive 
on achieving graph coverage. Actually, both methods can obtain solutions which 
cover the whole networks within few generations or iterations using any of the con-
sidered weight setting. Moreover, achieving the connectivity of the best solutions 
was occurred later than achieving the graph coverage. All weight settings have close 
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performance regarding the achievement of the connectivity. However, the weight 
setting 6 gives some late connectivity results with the SA-MCDS method. Finally, 
the weight settings 3 and 6 could help the GA-MCDS method to obtain the best 
approximate domination numbers, the weight settings 3 and 4 did the same with the 
SA-MCDS method. Therefore, the weight setting 3 is selected for the both methods.

7.3 � Procedural Analysis

The proposed MA-MCDS method contains three search procedures which are not 
related to the main genetic procedures. These procedures are the Filtering, Local 
Search and Final Intensification. In this section, we discuss the need for invoking 
such procedures in order to enhance the main proposed method. Figure 4 shows how 
these procedures affect the performance of the MA-MCDS. For two experimental 
graphs, three independent runs were carried out. The first run is a complete MA-
MCDS method, while the second and the third ones are for MA-MCDS method 
without Filtering and Local Search, respectively. It is clear that Filtering and Local 
Search is essential for achieving better performance of MA-MCDS. Moreover, the 
Final Intensification could improve the obtained solutions as shown from the final 
beak of the MA-MCDS curve for the test graph on the right hand side of Fig. 4.

8 � Numerical Results

In this section, we investigate the performance of two algorithms that we intro-
duced in Sects. 5 and 6. We have four comparisons results, the first comparison is 
between MA-MCDS and the standard GA using graphs G400

p,d
 , and the comparison 

results of this are shown in Table  5. The second performance comparison is 
between SA-MCDS and SLS using graphs G400

p,d
 , and the results of this compari-

son are reported in Table  6. Then, we compare the results of MA-MCDS with 
those of SA-MCDS, and the results of this comparison are reported in Tables 7 
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and 8 . In the final comparison, we compare the results of MA-MCDS and SA-
MCDS against the results of other benchmark methods presented in [4, 25, 52].

We used different quantities in making comparisons to measure the perfor-
mance of each algorithm. These quantities are computed as follows.

Table 5   Results of running 
MA-MCDS and GA on G400

p,d

n p Opt. GA MA-MCDS

Avg. Hits(%) Avg. Hits(%)

400 0.1 8 137.90 0 8.05 95
400 0.1 11 151.25 0 11 100
400 0.1 14 181.15 0 14 100
400 0.1 18 204.55 0 18 100
400 0.1 23 199.30 0 23 100
400 0.3 3 52.85 0 4.25 80
400 0.3 5 98.45 0 5 100
400 0.3 8 103.95 0 8 100
400 0.3 11 150.40 0 11.5 90
400 0.3 14 195.90 0 21.05 55
400 0.5 3 26.25 0 3 100
400 0.5 5 94.75 0 5.9 90
400 0.5 8 116.05 0 8 100
400 0.5 11 163.50 0 11 100

Table 6   Results of running 
SA-MCDS and SLS on G400

p,d

n p Opt. SLS SA-MCDS

Avg. Hits(%) Avg. Hits(%)

400 0.1 8 13.35 65 8.35 90
400 0.1 11 14.95 45 11 100
400 0.1 14 21.15 50 14 100
400 0.1 18 21.80 50 18 100
400 0.1 23 26.75 60 23.25 95
400 0.3 3 7.75 50 3 100
400 0.3 5 6.75 55 5 100
400 0.3 8 11.20 40 8 100
400 0.3 11 19.50 50 11 100
400 0.3 14 16.75 60 14 100
400 0.5 3 4.85 45 3 100
400 0.5 5 7.10 55 5 100
400 0.5 8 11.45 45 8 100
400 0.5 11 11.95 75 11 100
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•	 Minimum number (Min.) This measure gives the minimum number of nodes 
in the best solution found in the all independent runs, this represents an 
approximate connected domination number of the given graph.

•	 Average number (Avg.) This measure gives the average number of nodes in 
the best solutions found in the independent runs.

•	 Percentage (Hits). This measure gives the percentage of the number of times 
the optimal solution found throughout the independent runs.

•	 Average number (f-Evals. Avg.) This measure gives the average number of 
objective function evaluations over the independent runs.

•	 Standard deviation (f-Evals. Std.) This measure indicates the standard devia-
tion of the objective function evaluations over the independent runs.

We use the Wilcoxon rank-sum test [61, 62] to check the if there are statisti-
cal difference in results of our two proposed algorithms MA-MCDS, SA-MCDS 
and other methods. The level of significance used in the tests is 0.05. It is a pair-
wise test that detect significant differences in the behavior of two methods. We 
describe the test computations below.

We define di as the difference between performance scores of the two algo-
rithms on ith out of N different results. Differences are ranked depending on 
their absolute values. In case of a tie average, ranks are assigned. R+ is defined 
as the sum of ranks for the functions on which the first algorithm performs better 
than the second; and R− is the sum of ranks for the opposite. Ranks of di = 0 are 
split evenly among the sums; if there is an odd number of them, one is ignored:

8.1 � Performance Comparison of MA‑MCDS and GA for Graphs G400

p,d

The results of this comparison are reported in Table 5 and summarized in Fig. 5. 
All different algorithms have the same number of runs for each graph—we 
ran them 20 times. We considered three different density values: 0.1, 0.3, and 
0.5. The connected domination number of the graph is indicated in the “Opt.” 
column. The results show that MA-MCDS outperforms standard GA for all 
instances of the MCDS problem in terms average values of the obtained solu-
tions. In addition, MA-MCDS could obtain larger percentages (Hits) of hitting 
the optimal solutions for all instances. GA could not outperform MA-MCDS for 
any instance of the MCDS problem. According to statistical results reported in 
Table  9, MA-MCDS demonstrates a superior performance against GA for all 
instances.

R+ =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di),

R− =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di).
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8.2 � Performance Comparison of SLS and SA‑MCDS for Graphs G400

p,d

In this comparison, we compared SA-MCDS with SLS method presented in [59], 
and results of this comparison are reported in Table 6 and summarized in Fig. 5. All 
methods have the same number of runs for each graph, which is 20 times. The com-
parison between the two methods shows that SA-MCDS outperforms SLS for all 
instances of the MCDS problem. More precisely, the average results of SA-MCDS 
for all instances are still better than those of SLS. Moreover, SA-MCDS gives con-
siderably larger percentages of hits for all instances. This means that the annealing 
acceptance and the cooling schedule could help SA-MCDS to reach better solutions 
and escape from local solutions. According to statistical results reported in Table 9, 
SA-MCDS demonstrates a superior performance against SLS for all instances in 
terms of the success rates of finding the optimal solutions. Moreover, SA-MCDS 
could outperform SLS in terms of the average of the obtained solutions.

8.3 � Performance Comparison of MA‑MCDS and SA‑MCDS

For performance evaluation of our proposed algorithms, we need to measure the 
size of the MCDS produced by the MA-MCDS algorithm and compare it with the 
one produced by the SA-MCDS algorithm in addition to the computational cost 
for each of them. We reported the comparison results in Tables 7 and 8, for graphs 
G400

p,d
 and G800

p,d
 , respectively. Figures 5 and 6 summarize the approximate domina-

tion numbers and number of hits obtained by the two methods shown in Tables 7 
and 8, respectively. Figure 7 also shows processing time and function evaluations 
of each algorithm using some test networks. This figure shows the averages of 
processing time and function evaluations for graphs G400

p,d
 and G800

p,d
 taken over 20 

independent runs and the error bars represent the standard deviation. The two 
methods have similar performance regarding the processing time and number of 
function evaluations. It is clear from the results in Tables 7 and 8 that SA-MCDS 
performs better than MA-MCDS to obtain the optimum (d). Accordingly, It is 
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Table 7   Results of running MA-MCDS and SA-MCDS on G400

p,d

n p Opt. MA-MCDS SA-MCDS

Avg. Hits(%) f-Evals. Avg. Hits(%) f-Evals.

Avg. Std. Avg. Std.

400 0.1 8 8.05 95 11565.3 74.6 8.35 90 9751.1 239.8
400 0.1 11 11 100 11645.0 61.3 11 100 9495.6 33.4
400 0.1 14 14 100 11669.2 56.5 14 100 9470.7 93.1
400 0.1 18 18 100 11697.5 62.7 18 100 9478.7 75.3
400 0.1 23 23 100 11726.7 68.6 23.25 95 9433.8 51.1
400 0.3 3 4.25 80 11679.5 73.2 3 100 9712.4 134.1
400 0.3 5 5 100 11623.3 55.3 5 100 9686.9 139.5
400 0.3 8 8 100 11632.6 79.4 8 100 9775.3 126.2
400 0.3 11 11.5 90 11335.5 42.3 11 100 9443.2 68.6
400 0.3 14 21.05 55 11402.9 43.7 14 100 9477.7 112.0
400 0.5 3 3 100 11384.7 34.2 3 100 9662.5 127.4
400 0.5 5 5.9 90 11604.7 72.6 5 100 9730.0 208.3
400 0.5 8 8 100 11557.2 75.3 8 100 9585.4 109.1
400 0.5 11 11 100 11556.9 78.6 11 100 9482.9 40.5

Table 8   Results of running MA-MCDS and SA-MCDS on G800

p,d

n p Opt. MA-MCDS SA-MCDS

Avg. Hits(%) f-Evals. Avg. Hits(%) f-Evals.

Avg. Std. Avg. Std.

800 0.1 8 8.05 95 11747.0 60.6 8 100 4853.2 79.9
800 0.1 11 11.05 95 11706.1 60.5 11 100 4975.1 72.4
800 0.1 14 14 100 11786.1 79.8 14 100 4858.6 43.9
800 0.1 18 18 100 11736.1 76.3 18 100 4990.5 77.6
800 0.1 22 22 100 11921.0 204.7 22 100 4828.2 38.8
800 0.1 26 26 100 11891.8 120.5 26 100 4820.2 39.3
800 0.3 3 4.7 70 11710.9 93.8 3 100 5086.3 123.0
800 0.3 5 7.7 50 12013.4 401.1 5 100 5154.4 143.4
800 0.3 9 9.9 85 11725.6 56.6 9 100 5205.5 238.4
800 0.3 13 13 100 11685.5 66.2 13 100 4889.6 13.9
800 0.5 3 6.05 40 11786.5 183.1 3 100 5047.6 174.8
800 0.5 6 7.65 55 11858.4 255.3 6 100 5015.5 140.2
800 0.5 9 12.95 35 11969.0 303.5 9 100 5117.8 198.2
800 0.5 12 12 100 11704.3 48.1 12 100 4994.6 46.6
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clear from the difference in average results that SA-MCDS has a better perfor-
mance for most problem instances. In addition, SA-MCDS show a noticeably 
higher percentages of hits for many problem instances. Moreover, Fig. 7 shows 
that SA-MCDS could find the solutions faster than MA-MCDS. Results in 
Tables  7 and 8 and Fig.  7 show the difference between MA-MCDS and 
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SA-MCDS methods in terms of the computational costs of the objective function 
and processing time. These results show that SA-MCDS could find the solutions 
faster than MA-MCDS.

According to the significance test by rank-sum test, there is no significant dif-
ference at level 0.05 between the two proposed methods in terms of the solution 
averages as shown in Table 9. However, SA-MCDS shows a better performance 
compared to MA-MCDS in terms of the f-Evals. and hits percentages. By conven-
tional criteria, this difference in f-Evals. and percentage hits is considered to be 
extremely statistically significant.

Some of classical network metrics have been considered in order to analyze the 
performance of the proposed methods. These metrics are the diameter, average 
node degree, approximate domination numbers and convergence time. Figure  8 
shows the average values of these metrics calculated from the obtained solutions 
by the proposed algorithms over 10 independent runs on Net1 , Net2 , … , Net8 . Two 
types of diameters are calculated; the unweighted one in which all edges are equal 
in cost, and the weighted one in which the edge weight is the Euclidean distance 
between the nodes connected by this edge. The diameter values of the connected 
dominating sets obtained by the proposed methods are close to each other. How-
ever, those diameter values are slightly greater than the diameter values of the 
whole graph when the graph size is increased. In conclusion, the obtained con-
nected dominating sets are located in the middle of the network graphs. For the 
node degree metrics, the minimum, average and maximum values of the obtained 
connected dominating sets are represented in Fig.  8, as well as those values of 
the whole network graphs. Fore each graph, those node degree values of the con-
nected dominating sets and the whole graph are close to each other. However, 
those diameter values are slightly lower than the diameter values of the whole 
graph when the graph size is increased. This may support the quality of the 
obtained solutions in terms of the well-distribution of the dominating nodes over 
the graph. Figure 8 also shows the close performance of the two proposed meth-
ods in calculating the approximate domination numbers. Finally, the processing 
time of the SA-MCDS method is slightly smaller than that of the MA-MCDS 
method for the large size networks as reported in Fig. 8. This could be expected 
since the SA-MCDS method is a single-solution search method while the MA-
MCDS method is a population-based search method.

Table 9   Rank-sum test for comparison results in Tables 5, 6, 7 and 8

Comparing Criteria Compared Methods R
−

R
+ p-value Best Method

Avg. GA MA-MCDS 0 105 7.425 × 10−6 MA-MCDS
SLS SA-MCDS 0 105 0.1349 –
MA-MCDS SA-MCDS 70.5 335.5 0.6223 –

Hits(%) GA MA-MCDS 105 0 1.2125 × 10−6 MA-MCDS
SLS SA-MCDS 105 0 2.215 × 10−6 SA-MCDS
MA-MCDS SA-MCDS 337 69 1.1381 × 10−4 SA-MCDS

f-Evals. MA-MCDS SA-MCDS 0 406 1.4041 × 10−10 SA-MCDS
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8.4 � Determining Backbone Nodes in a Static Wireless Sensors Network

In this section, we study the performance comparison of the two proposed algo-
rithms MA-MCDS and SA-MCDS to identify backbone nodes in a static wireless 
sensors network. In addition, our two proposed algorithms are compared with six 
benchmark methods presented in [4, 25, 52] through two main experiments. In 
these experiments, the compared data of the benchmark methods are taken from 
their original references. The main reasons for doing two different experiments is 
that the compared performance measures and availability of the compared data 
are different between the compared benchmark methods. In the fist experiment, 
we measure the size of the connected dominating set produced by MA-MCDS 
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and SA-MCDS, and compare them with those produced by the three methods; 
New1 and New2 [4] and MCDS [51]. Figure 9 shows comparison results that has 
been done using the following parameters.

•	 N: The number of nodes in the network.
•	 D: The number of backbone nodes (the size of the connected dominating set) 

in the network.
•	 r: The radius of nodes’ transmission range.

The authors of [4] gave several experimental results comparing New1, New2 and 
MCDS methods in terms of size of backbone nodes. Experimental results in [4] 
show that New2 is better than both New1 and MCDS algorithms at relatively 
small values for r, for example, r = 25, 50 . On the other hand, MCDS method out-
performs New1 and New2 methods when the r value is large, for example, r = 75 . 
Therefore, we paid more attention to New2 and MCDS methods.

In our experiments, we assigned three different values: 25,50,75 to the radius 
of the network nodes’ transmission range r. For each value of r, we change the 
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number of nodes N from 10 to 100. For each N, MA-MCDS and SA-MCDS have 
the same number of runs for each graph, which is 20 times, while other two meth-
ods have 1000 times [4]. The experimental results of each algorithm are averaged. 
We compare all methods in terms of number of backbone nodes generated with 
each them. Thus, a better result is obtained when the backbone is of minimum 
cardinality.

Results of this comparison are demonstrated in Fig. 9 to show number of back-
bone nodes against number of nodes in the network for different values of radius r. 
It is clear that the performance of our proposed MA-MCDS and SA-MCDS methods 
outperform other methods, and particularly the SA-MCDS method outperforms all 
methods.

By Inspecting Fig. 9c we see that, when the transmission radius r is large (rela-
tive to the area), the MA-MCDS and SA-MCDS algorithms perform closely to each 
other. On the other hand, When the transmission radius become small, as shown in 
Fig. 9a, b, our two methods perform better than other methods. In Fig. 9a, we can 
clearly see that there is a gap between SA-MCDS and the other methods.

Additionally, experimental results shown in Figs.  10 and 11 indicate that the 
two proposed methods could obtain MCDS as a virtual backbone of a static wire-
less sensors network. It is clear that SA-MCDS gives a better backbone when 
r = 25,N = 40 , however, the two methods produce the same results when 
r = 50,N = 20.

The final comparison experiment is to test our results with network instances 
described in Table 2. Table 10 shows the comparison results obtained by the pro-
posed methods against the following methods:

•	 GRASP for connected dominating set problems [25].
•	 Ant colony optimization algorithms for the minimum connected dominating set 

problem: ACO and ACO+PCS [52].

r = 50, N = 20 r = 25 & N = 40

Fig. 10   Examples of obtaining backbone using MA-MCDS
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Table 10 presents the minimum and average values of the MCDS obtained by the 
proposed methods and the above-mentioned methods. According to the signifi-
cance test by rank-sum test shown in Table 11, there is no significant difference at 
level 0.05 between the results of the compared methods shown in Table 10. How-
ever, by careful investigation of the results shown in Table 10, we can generally 
conclude that our two proposed methods perform the best for network instances 
with large number of wireless nodes. Figure 12 shows the comparison results of 
different methods in big-size networks. Although our proposed methods perfor-
mance is almost the same as other methods, other methods are slightly better in 
big ranges of small size networks. Consequently, we can claim that our two meth-
ods are more practical than others in wireless networks design and management. 
Specifically in wireless sensor networks, typically we have a large number of sen-
sors in unit area. Conserving energy/battery consumption is of essence here, so 
finding small number of wireless sensors who are responsible for communica-
tions and controlling other wireless sensor nodes is crucial. Hence, our methods 
are more suitable for wireless sensor networks design and management.

A node density in a network can be defined as the density distribution of other 
nodes around a each node. The following relation can estimate the average num-
ber of nodes within the range of each node in a graph which may be used as an 
approximation of the node degree.

where r, L and N are the range, area length and number of nodes, respectively, as 
shown in Table 2. In Eq. 4, the numerator represents the range area of each nodes, 
while the denominator uniformly estimates area per node. Finding a MCDS in low 

(4)� =
�r2

L2∕N
,

r = 50, N = 20 r = 25 & N = 40

Fig. 11   Examples of obtaining backbone using SA-MCDS
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Table 10   Comparison results for network clustering

Network ACO ACO+PCS GRASP MA-MCDS SA-MCDS

ID Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Net1
60

20 21.6 19 21.2 19 19.8 17 18.0 13 18.0

Net1
70

16 17.0 15 16.2 14 15.1 15 15.3 15 15.4

Net1
80

12 14.0 12 13.1 12 12.0 11 11.9 12 13.2

Net1
90

11 11.8 11 11.6 10 10.6 11 11.7 11 11.9

Net1
100

8 9.0 8 8.9 8 8.2 10 11.2 10 10.8

Net1
110

8 8.5 8 8.5 7 7.8 8 8.4 9 13.4

Net1
120

7 7.5 7 7.2 6 6.1 8 8.9 8 8.9

Net2
80

23 24.7 22 23.6 22 22.9 14 15.5 15 16.8

Net2
90

22 23.8 21 23.6 20 20.7 18 19.4 19 21.7

Net2
100

17 20.0 17 19.0 17 17.9 18 19.4 17 19.7

Net2
110

15 17.2 15 16.8 15 15.9 18 20.9 20 20.9

Net2
120

15 16.2 14 15.5 13 13.8 14 14.6 13 14.4

Net3
70

46 50.7 46 49.6 45 46.5 36 37.3 37 38.9

Net3
80

41 43.7 41 43.9 35 37.5 35 37.4 37 39.5

Net3
90

34 36.0 33 35.7 30 30.9 34 34.9 35 35.9

Net3
100

28 30.8 23 31.0 25 25.8 29 31.4 30 33.4

Net3
110

23 27.4 22 26.4 22 22.7 28 30.0 28 29.4

Net3
120

21 23.6 21 23.4 18 19.1 27 27.8 25 27.8

Net4
100

46 50.7 46 49.6 45 46.5 33 34.4 34 35.2

Net4
110

43 44.9 42 44.8 37 39.5 39 40.6 38 40.3

Net4
120

37 39.9 37 39.8 34 35.4 34 34.8 35 35.9

Net4
130

32 34.7 32 34.9 29 30.5 35 35.8 36 37.8

Net4
140

30 31.3 29 31.3 25 34.3 33 33.6 34 35.3

Net4
150

28 29.6 26 28.8 23 24.3 29 30.8 30 33.8

Net4
160

24 26.6 25 26.5 22 22.3 30 30.8 28 30.9

Net5
130

60 64.5 60 64.3 57 58.6 43 48.6 46 48.2

Net5
140

53 57.2 52 57.0 50 52.3 47 50.5 49 49.8

Net5
150

51 54.9 51 54.4 46 48.5 43 44.2 35 45.9

Net5
160

47 50.5 45 49.8 43 43.7 41 41.6 41 42.8

Net6
200

55 58.6 52 58.8 49 50.4 59 61.5 56 63.6

Net6
210

51 53.5 50 52.8 45 46.1 43 46.8 45 47.9

Net6
220

47 48.9 45 48.4 40 42.1 48 49.2 47 49.1

Net6
230

44 47.5 44 46.9 39 39.8 43 44.9 45 46.8

Net7
200

79 82.0 79 81.5 73 75.4 54 56.2 57 58.5

Net7
210

75 79.1 74 78.2 67 70.0 64 69.2 66 67.9

Net7
220

68 72.6 69 73.8 62 67.0 61 64.4 62 64.5

Net7
230

66 69.2 66 68.9 59 60.9 55 57.7 55 55.6

Net8
210

99 101.6 98 104.0 90 94.7 70 75.0 70 75.5

Net8
220

88 95.4 91 97.6 82 87.9 73 77.3 74 79.8
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density networks is harder than the high density ones since the average number of 
dominated nodes by a MCDS member is decreased.

Figure 13 shows that the proposed methods could obtained better results than 
the other compared methods. Specifically, both of MA-MCDS and SA-MCDS 
could obtain better results in 21 out of 23 graphs with low density of node 
distributions.

Table 10   (continued)

Network ACO ACO+PCS GRASP MA-MCDS SA-MCDS

ID Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Net8
230

86 91.4 86 90.3 78 81.6 69 70.8 71 72.1

Net8
240

82 85.8 80 84.1 74 76.1 65 68.0 67 72.3
Overall Avg. 40.44 43.27 39.85 42.97 36.76 38.57 35.66 37.58 35.98 38.52

Table 11   Rank-sum test for 
comparison results in Table 10

Compared methods R
−

R
+ p value Best method

MA-MCDS ACO 665 196 0.5221 –
MA-MCDS ACO+PCS 622.5 235.5 0.6002 –
MA-MCDS GRASP 467 394 0.9482 –
SA-MCDS ACO 653.5 207.5 0.5683 –
SA-MCDS ACO+PCS 609.5 251.5 0.6561 –
SA-MCDS GRASP 443.5 417.5 0.9889 –
MA-MCDS SA-MCDS 591 270 0.8783 –

Fig. 12   Compared results for big-size networks
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9 � Conclusion

In this paper, we investigated the minimum connected dominating set problem. 
We proposed two new algorithms to solve the MCDS problem: the first algorithm 
is called Memetic Algorithm for solving MCDS problem (MA-MCDS), and the 
second algorithm is called Simulated Annealing for solving MCDS problem (SA-
MCDS). Also, we presented a new objective function to be used by both algorithms 
to achieve a better performance. In addition, we tested the proposed algorithms and 
applied them to identify the network virtual backbone structure in static wireless 
sensors networks by reformulating them to the minimum connected dominating set 
problem. Our experimental results on different standard benchmark test graphs show 
the efficiency of the proposed algorithms especially SA-MCDS. Test results demon-
strated that both MA-MCDS and SA-MCDS are very efficient in terms of computa-
tional costs and solution quality to compute and identify MCDS.

The proposed methods can be extended by enhancing the filtering and connect-
ing procedures as future works. Specifically, the filtering procedure can be enhanced 
by studying the relations between nodes to be removed. In addition, the connect-
ing procedure can be enhanced by studying relations between solution connected 
components.
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