
www.manaraa.com

Vol.:(0123456789)

Journal of Network and Systems Management (2019) 27:647–687
https://doi.org/10.1007/s10922-018-9480-1

1 3

Two Meta‑Heuristics Designed to Solve the Minimum
Connected Dominating Set Problem for Wireless Networks
Design and Management

Abdel‑Rahman Hedar1,2  · Rashad Ismail3,4 · Gamal A. El‑Sayed1,5 ·
Khalid M. Jamil Khayyat6

Received: 29 July 2017 / Revised: 23 October 2018 / Accepted: 8 November 2018 /
Published online: 21 November 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Wireless ad hoc and sensor networks play an important role in providing flexible
deployment and mobile connectivity for next generation network. Since there is no
fixed physical backbone infrastructure, some of the nodes are selected to form a vir-
tual backbone. Efficient algorithms for identifying the Minimum Connected Domi-
nating Set (MCDS) have many practical applications in wireless sensor networks
deployment and management. We propose two algorithms in this paper for solving
the MCDS problem. The first algorithm called Memetic Algorithm for the MCDS
problem, or MA-MCDS shortly. This is a new hybrid algorithm based on genetic
algorithm in addition to local search strategies for the MCDS problem. In order to
achieve fast performance, MA-MCDS algorithm uses local search and intensifica-
tion procedures in addition to genetic operations. In the second algorithm, simulated
annealing is used to enhance a stochastic local search with the ability to of run away
from local solutions. In addition, we present a new objective function that effectively
measure the quality of the solutions of our proposed algorithms. Both algorithms are
tested using different benchmark test graph sets available in the literature, and shows
good results in terms of solution quality.

Keywords  Minimum connected dominating set · Memetic algorithm · Simulated
annealing · Stochastic local search · Wireless network design

1  Introduction

Minimum Dominating Sets (MDS) are minimum subsets of the nodes whose neigh-
borhoods cover the whole graph. Computing MDS is a classical graph theory prob-
lem that has been covered in the literature. Minimum Connected Dominating Set

 *	 Abdel‑Rahman Hedar
	 ahahmed@uqu.edu.sa; hedar@aun.edu.eg

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9936-5987
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-018-9480-1&domain=pdf

www.manaraa.com

648	 Journal of Network and Systems Management (2019) 27:647–687

1 3

(MCDS) problem is a subordinate of the original MDS problem that inspired scien-
tists and researchers in field of wireless networks. In addition, the MCDS concept
is useful in wireless sensor network, especially large scale ones, in order to find the
minimum-sized connected virtual backbone in those networks. Therefore, identify-
ing important nodes which compose the skeleton of the virtual backbone network is
crucial in wireless sensor networks management [1–9]. Moreover, there are several
application domains for the MCDS problem. For examples, it can be used as a tool
in fault management of wireless sensor networks [10], in clustering mobile ad hoc
networks [1], and in general network management [2, 9, 11]. The main challenge in
such applications that their original problems, MDS and MCDS, are NP-complete
[12, 13].

Using meta-heuristics as artificial intelligence tools have attracted researchers in
the area of optimization recently. They cad be derived by simulating natural pro-
cesses or by triggering intelligent-learned routines [14]. Meta-heuristics use dif-
ferent techniques to avoid local minima issue. These techniques can be classified
into three categories: point-to-point techniques, population-based techniques, and
hybrid techniques. Simulated annealing and tabu search are examples of the first cat-
egory, while genetic algorithms and scatter search are examples of the second one.
Memetic algorithms are example of the third category which combine techniques
from the first two categories [15].

Simulated Annealing (SA) is a meta-heuristic based on point-to-point technique
that has been used effectively in combinatorial problems. Its capability to get away
from local maxima entrapment represents one of the most attractive characteristics
of SA. It does so by moving down-hill using a probabilistic procedure particularly in
the early stages of the search. Hence, SA has been used widely in different problems
[16–18]. Kirkpatrick et al. introduce a form of SA that could be used to solve hard
optimization problems [19]. It is derived from neighborhood search at which trial
solutions are generated incrementally in the neighborhood of the current solution.
Replacing the current solution by one of recently generated trial solutions is decided
by SA according to a probability depending on the difference between their objec-
tive function values. In theory, a convergence to an optimal solution needs infinite
number of iterations controlled by a cooling schedule procedure [16, 20]. Practi-
cally, a proper cooling schedule is important to behave as the asymptotic conver-
gence of the SA [21].

Genetic Algorithm (GA) is a population-based techniques has been used to solve
hard combinatorial problems. It has been derived from the biological evolution at
which previous solutions are used to generate successively better solutions. GA has
been extended by using local search algorithm for each solution among generations,
this modification to GA has been called Memetic Algorithm (MA) by Moscato in
1989 [22]. Pastorino proved that MA is able to improve convergence time, and con-
sequently MA is more attractive than GA [23]. MA utilizes both global and local
search by using GA to perform exploration while the local search method performs
exploitation. This combination of global and local search inspired many researchers
in global optimization field.

We propose two new algorithms for solving the MCDS problem. We emphasize
the application of our two algorithm in wireless network. Specifically, the proposed

www.manaraa.com

649

1 3

Journal of Network and Systems Management (2019) 27:647–687	

algorithms deduce a skeleton for a virtual backbone network through which a com-
plex wireless sensor network can be controlled and managed. These new algorithms
presented at this paper are two new meta-heuristics called Memetic Algorithm for
the MCDS problem (MA-MCDS), and Simulated Annealing for the MCDS problem
(SA-MCDS). In each algorithm, we use an on/off variable representation of different
solutions while searching for the MCDS, then a new objective function will be used
by each algorithm to measure the quality of the solution. That objective function
takes into consideration the size of the domination in addition to the connectivity
at the graph and its cardinality for each solution. In addition, MA-MCDS uses both
intensification search methods and GA search methodology. Local Search, Filtering
Search and Elite Dominating Sets Inspiration are the intensification search methods
used by MA-MCDS [24]. In order to achieve better results, solution connecting is
used as well as a new mutation based on the best solution found so far and called
BS-Mutation. The role of BS-mutation is to add some nodes gradually from the best
obtained solutions or remove some in order to get a better comprehensive coverage
and connectivity. MA-MCDS invokes a solution connecting procedure by connect-
ing the disconnected nodes in the obtained solution.

On the other heuristic SA-MCDS, the stochastic local search (SLS) method is
implemented as a first step to search for local solutions near to the given solutions.
The next step is to improve the SLS method by invoking the annealing acceptance
which makes it possible to escape from local solutions. Also, Node-Reduction,
Node-Addition and Node-Swapping are used to improve iterated solutions.

We compare the results of our proposed meta-heuristics against some standard
methods from the literature. We used several instances of the MCDS problem to
test the performance and the effectiveness of our methods. The experimental results
show that our proposed methods generally outperform the ones tested against. More-
over, SA-MCDS shows a superior performance in obtaining better solutions within
cheaper computational costs.

This paper is organized as follows. In the next section, we briefly give an over-
view to the MCDS problem. A description of the related research works on the
MCDS problem is presented in Sect. 3. Section 4 presents the design of a new objec-
tive function for the MCDS problem. In Sects. 5 and 6 , we highlight the main com-
ponents of both the MA-MCDS and SA-MCDS methods and present their formal
algorithms. The details of the proposed methods implementation and their initial
and control parameters setting are illustrated in Sect. 7. The numerical experiments
with the proposed methods and their comparisons against some benchmark methods
are presented in Sect. 8. Finally, the conclusion makes up Sect. 9.

2 � Minimum Connected Dominating Set Problem

This section introduces the MCDS problem and explains the system model. Let
G = (V ,E) be a simple undirected graph where V(G) is a set of nodes of the graph, and
E(G) is a set of edges connecting the nodes of the graph. There is a path P of alternat-
ing consecutive sequence of nodes and edges that connects nodes u, v ∈ V(G) provided
that no node is repeated in the path from u to v. The length of the path P is calculated

www.manaraa.com

650	 Journal of Network and Systems Management (2019) 27:647–687

1 3

by the number of edges in that path. Nodes u and v are said to be connected if there is a
path between u and v. Hence, the condition for a graph G to be connected is that every
pair of nodes is connected. In a disconnected graph G, a connected component is a sub-
graph that is connected and cannot be part of any bigger subgraph. A graph is said to
be itself connected if it has exactly one connected component which is the whole graph.

A dominating set in a graph is a subset of nodes D ⊆ V such that for all u ∈ V − D
there exists a v ∈ D for which {u, v} ∈ E . Consequently, each node is either a member
of the dominating set or an adjacent to a node that is a member to the dominating set.
Thus, this node u is said to be covered. The MDS problem is to find a dominating set
in a graph with minimum cardinality. The cardinality of an MDS in a graph G is called
the domination number of G and written as �(G).

The MCDS is another important class of domination problems that has several
applications in networks. In a connected graph G, there can be a connected dominat-
ing set that is a subgraph of G. Among all possible connected dominating sets of G, the
one with the minimum cardinality is called the MCDS. Hence, the MCDS problem is
to find in a graph G a MCDS. The cardinality of a MCDS of graph G is called the con-
nected domination number of G and is written as �c(G).

As it is known from the literature finding a MCDS for a given graph G is not an
easy task because it is an NP-complete combinatorial problem [12, 13]. Therefore,
the MCDS problem is a hard combinatorial problem and cannot be solved exactly in
a polynomial time. Consequently, finding an efficient solution for the MCDS problem
is always one of the major areas of research in the graph theory. Recently, the MCDS
problem gain more attention as it is promising in connected facility locations and has
many applications in wireless networks [2, 3, 5, 6, 25–27]. It has been studied inten-
sively in computer science and operational research [28–31].

3 � Related Work

In this section, we review the state-of-the art of theory and applications of construct-
ing the MCDS problem. The Connected Dominating Set (CDS) in a network corre-
sponding graph can form a skeleton of a virtual backbone of this network. Actually,
the domination property of this dominating set ensures that every node is either in the
set or adjacent to (some node in) the set. Therefore, the network connectivity property
guarantees that any two nodes can message each other via a series of adjacent nodes
in the set. There are many algorithms in the literature to identify important nodes (vir-
tual backbone nodes) form a connected dominating set of the wireless ad hoc networks
[1–9, 29, 32, 33]. Beside those methods, there are several approximate and heuristic
methods that attempts to solve the considered problem in generic ways for its general
formulations.

3.1 � Virtual Backbone of Wireless Networks

Wireless networks such as sensor network and ad-hoc network consist of several
wireless nodes. In general, Wireless sensor networks are deployed in many fields,

www.manaraa.com

651

1 3

Journal of Network and Systems Management (2019) 27:647–687	

for example, biological, medical, military, environment monitoring and protection,
traffic and crowd management. its physical characteristics resulted in some limita-
tions like limited storage capacity, processing speed, communication bandwidth,
short transmission range and typically powered by batteries [34]. Recharging these
batteries is not easy because sensors are usually deployed in awkward locations [35].
The absence of physical backbone network makes it difficult to control such net-
works. Hence, virtual backbone network can be a feasible solution. Basically, virtual
backbone is a set of nodes that looks like a skeleton connecting the entire network
together. A message can be sent from any regular node to a destination node by
passing a message to a neighboring node that is a member of connected set. The
major advantage of the virtual backbone is network routing and management as it
limits the search space to the set of backbone nodes.

Messages exchange among sensor nodes depend on the architecture of the con-
structed virtual backbone. Virtual backbone construction can be achieved by com-
puting a connected minimum dominating set for sensor network nodes. Among
important features of a connected minimum dominating set are maintenance reduc-
tion, and improving routing time [1–3, 9].

A smaller virtual backbone consume less energy, and performs the routing more
efficiently. Hence, finding the MCDS is among important performance factor in
wireless network routing [2, 36, 37]. Data aggregation is another example for the
important benefit of computing MCDS in efficient data transmission in wireless sen-
sor network [26, 38]. In data aggregation, each node delay its data transmission for
certain period of time to merge any data received from its neighbor within this time
window with its delayed data. The drawback of data aggregation is data delayed
delivery, this issue can be practically mitigated using minimum connected dominat-
ing set with a minimum average backbone path that work faster for data aggregation.

Yu et al. [8, 9] proposed a mapping algorithm for the structural controllabil-
ity problem on a communication network. Their algorithm finds crucial nodes in
sophisticated communication networks by identifying crucial links in the network
according to the number of its close subordinates.

The multi-hop connected clustering problem for a given homogeneous wireless
network has been simulated into computing a minimum d-hop CDS problem by Gao
et al. [1]. They developed a distributed approximation method named Connected
Sparse Clustering Scheme. The first step of their algorithm is dominator selection,
then inserting connector, and finally eliminating redundancy.

A greedy approximation algorithm for computing a MCDS in multi-hop wire-
less networks with disparate communications ranges is presented in [39] with good
approximation ratio compared to previous work. In [40], Mohanty et al. proposed a
distributed three-phase greedy approximation method. At this algorithm nodes store
one-hop neighborhood information to compute the next dominators. The CDS size
was reduced by the demotion of some existing dominators after finding CDS. Kui
et al. presented an energy-balanced connected dominating set distributed scheme
that extends the network lifetime by constructing an energy-balanced connected
dominating set for data collection [41]. Mohanty et al. [3] presented a centralized
degree-based greedy approximation algorithm for constructing a connected dominat-
ing set in the wireless networks. CDS is constructed by selecting pseudo-dominating

www.manaraa.com

652	 Journal of Network and Systems Management (2019) 27:647–687

1 3

set (PDS), then using an improved Steiner tree construction technique to connect
PDS nodes, and finally removing redundancy in dominators within CDS. As this is a
centralized algorithm, it does not scale well with the large number of wireless sensor
networks. Consequently, they [2] developed a distributed version of the algorithm to
solve the scalability and reliability problems. However they paid the cost of achiev-
ing scalability and reliability in terms of accuracy, as their centralized algorithm is
more accurate than the distributed one.

Kim et al. developed algorithms for constructing an energy-efficient CDS with
limited diameter for a wireless network [38]. They presented two centralized algo-
rithms with constant performance ratios for CDS size and CDS diameter as well.
Moreover, they developed a distributed version of one of them. All three algorithms
are based on building a tree search algorithm, then finding a Maximum Independ-
ent SET (MIS) and finally connecting MIS nodes to form a CDS [38]. In their first
algorithm, a CDS with a small diameter is formed by constructing a BFS tree, and
then by connecting the root r to all the MIS nodes in tree search level by level. Con-
sequently, the maximum number of nodes between an MIS node at level i and its
nearest MIS nodes at level i + 1 and level i + 2 has been determined. Next they com-
puted an MIS of G from which they finally get a CDS of G. In their second algo-
rithm, first an MIS is obtained, then spanning tree construction connects the MIS
nodes. Moreover, their second algorithm uses root node’s hop-distance information
to each node. Hence, a node in the level i + 1 is connected to another node in level
i by adding at most one node. Consequently, the First algorithm has a larger per-
formance ratio for size and a smaller one for diameter than the second one. Their
final algorithm is the distributed version of the second one. In addition, there are
several energy-efficient algorithms have been investigated in the literature. In [42],
the authors propose a distributed algorithm to find a network dominating set using
capability function which tries to utilize memory, processing power, battery power,
mobility ratio and computing load. Moreover, a polynomial time algorithm which
can recursively computing minimum weighted dominating sets has been proposed in
[43]. That algorithm respects latency and energy consumption constraints.

3.2 � Theoretical Studies

Design approximate algorithms for the MCDS problem in various graphs have
attracted many theoretical researchers, see [29] and references therein.

Guha and Khuller [44] proposed two polynomial-time greedy and centralized
algorithms to solve the MCDS problem for a general undirected graph. Ruan et al.
[45] present a new one-step greedy approximation with logarithmic performance
ratio of the maximum degree in the input graph.

Wu et al. [46] designed approximation algorithms with an improved performance
ratio to solve the MCDS and maximal independent sets for unit disk graphs. In [47],
an approximation algorithm is developed with an approximation ratio which is a
fraction of the size compared to that of the approximation algorithm at worst over
the size of the optimal solution.

www.manaraa.com

653

1 3

Journal of Network and Systems Management (2019) 27:647–687	

A generalized MCDS problem called k-hop connected dominating set is consid-
ered in [28, 48]. In this generalized problem, a node v is dominated by another node
u if the distance between v and u is at most k. Coelho et al. [28] present an approxi-
mation algorithm for this problem for weighted and unweighted graphs.

3.3 � Heuristic Studies

Developing heuristics to construct MCDS has been the focus of many researchers on
graph theory and artificial intelligence for many years.

Misra et al. proposed a new heuristic named collaborative cover [26]. The heu-
ristic assumes a connected graph dominating number is at least two, and subset of
independent dominator defines optimal substructure. A partial Steiner tree is devel-
oped during the construction of the independent dominators. Steiner nodes in the
formation of Steiner tree for the independent set of G is computed in post-processing
step. It has been shown that collaborative cover heuristics outperform degree-based
heuristics in computing independent set and Steiner tree.

Guha and Kuller [44] propose two centralized greedy heuristic algorithms for
connected dominating set formation. The one node with maximum degree will
become dominating node (dominator) at each step. Their first algorithm builds up
the connected dominating set at one node, then restricts the searching space for the
next dominator(s) to the current uncovered nodes. The connected dominating set
expands until there is no uncovered nodes. In the second algorithm, all the possi-
ble dominating nodes are determined in the first stage, then intermediate nodes are
selected to create a connected dominating set in the second stage. The implemen-
tations of both algorithms were provided by Das et al. [49], and they mention the
maintenance of the connected dominating set if nodes have mobility. Cheng et al.
[32], proposed a greedy algorithm for MCDS in unit-disk graphs. There algorithm is
based on an MIS but the computed connected dominating set may not contain all the
nodes in the MIS.

The algorithm proposed by Wu and Li computes a connected dominating set and
then removes some redundant nodes from the CDS using two rules [50]. In phase
one, each node is marked true (dominator) if it has two unconnected neighbors.
Based on the first rule, a marked node can unmark itself if its neighbor set is cov-
ered by another neighboring marked node. Based on the second rule, a marked node
can unmark itself if its neighborhood is covered by two other neighboring directly
connected marked nodes. the combination of both rules reduce the cardinality of
connected dominating set efficiently. In [7], Wan et al. gave the performance ratio of
this algorithm and correct the time complexity. Raghavan et al. [4] presented a CDS
algorithm called marking process and two backbone node-reducing rules and pro-
vided some experimental results compared with the algorithms in [51].

Several meta-heuristics algorithms have been developed to deals with the con-
sidered problem. Li et al. design a GRASP for connected dominating set problems
[25]. Ant colony optimization algorithms for the minimum connected dominating
set problem have been proposed in [52]. In [53], the authors proposed two popula-
tion-based methods using hybrid GA and greedy search for the minimum weighted

www.manaraa.com

654	 Journal of Network and Systems Management (2019) 27:647–687

1 3

connected dominating set problem. Another GA-based method has been presented
in [54] that utilizes the MCDS to save energy and optimize the load balanced in
wireless networks.

4 � Solution Representation and Evaluation

In this section, a new objective function f is presented in order to evaluate the solu-
tion quality for the MCDS. First, we describe how to represent solutions in the pro-
posed methods.

4.1 � Solution Representation

In the MA-MCDS and SA-MCDS methods, solutions are represented in binary
forms. Specifically, a trial solution x represents a subset of nodes Vx ( ⊆ V  ), and is
coded as a 0-1 vector with dimension equal to |V|, where |V| is the number of nodes
in the graph. Then, each component xi of x can be defined as

for all i = 1,… , |V|.

4.2 � Solution Evaluation

During the search process, generated solutions in both methods are evaluated using
a specified objective function f to determine their quality. This objective function
considers the number of nodes covered by a solution, and their connectivity and car-
dinality. The objective function can be formally defined as:

where nx is the number of nodes covered by solution x, |Cx| is the number of nodes
contained in the largest maximal connected component Cx of x, and �x is the number
of nodes contained in x. Moreover, three weights �1 , �2 , and �3 ( 0 ≤ �1,�2,�3 ≤ 1 ,
and �1 + �2 + �3 = 1 ) are used to trade-off between the objective function
components.

The objective function has three terms which can be classified as follow:

•	 Coverage The first part, fCov(x) = nx∕|V| , reflects the size of domination on G by
x. If x represents a dominating set, then this part is equal to 1.

•	 Connectivity The second part, fCon(x) = |Cx|∕�x , reflects the connectivity
between the nodes in x. If x represents a connected set, then this part is equal to
1.

xi =

{
1, if Vi ∈ Vx,

0, otherwise,

(1)f (x) = �1

nx

|V|
+ �2

|Cx|
�x

+ �3

|V| − �x

|V|
,

www.manaraa.com

655

1 3

Journal of Network and Systems Management (2019) 27:647–687	

•	 Cardinality The third part fCard(x) = (|V| − �x)∕|V| distinguishes between solu-
tions that have the same values of the first and second parts based on the number of
nodes contained in each of them.

From the previously mentioned definitions of those three parts, the objective function
can be reformulated as

Therefore, the considered problem is reformulated as the following maximization
problem

where x is a binary variable of size |V|. In addition, the considered problem can be
treated as a multi-objective optimization problem. Equations (2) and (3) convert it to
a single-objective optimization problem using the weighted sum method [55]. The
main challenge of such problem reformulation is how to control and tune the objec-
tive weights. During designing and implementing the proposed methods, special
attention has been given first to achieve the graph coverage and solution connectiv-
ity, then trying to reduce the solution cardinality.

For wireless and ad hoc networks fault tolerance, routing and deployment issues,
this objective function can be extended by adding more objectives. For example, we
can add new weighted terms that reflects the energy saving by reducing the solution
diameters, and the fault tolerance by reducing the node degrees in solutions.

5 � Memetic Algorithm for the MCDS Problem

In this section, a memetic-based method called MA-MCDS is designed to solve the
considered problem. Like other genetic-based algorithms, MA-MCDS starts with a
well-distributed random population of solutions or individuals. Then, the previously
defined objective function is repeatedly called in order to estimate the fitness of the
initial population individuals and to rank them. At each generation of the MA-MCDS
method, an intermediate population of parents is selected from the current population
individuals based on their fitness. Then, three genetic operators; crossover, mutation
and survival selection, are applied in order to reproduce the next generation popula-
tion. The MA-MCDS method invokes three more improvement operators; local search,
filtering and solution connecting, in order to improve and refine the generated solu-
tions in each generation. Finally, a final intensification mechanism is applied in order
to enhance the best obtained solutions before terminating the search process. In the fol-
lowing subsections, we describe components and operators of the MA-MCDS method
before formally presenting the algorithm.

5.1 � Genetic Operations

For the main genetic operations, the MA-MCDS uses linear ranking selection
[56], and the standard one-point crossover and uniform mutation [57]. Beside the

(2)f (x) = �1fCov(x) + �2fCon(x) + �3fCard(x).

(3)max f (x),

www.manaraa.com

656	 Journal of Network and Systems Management (2019) 27:647–687

1 3

standard mutation operation, MA-MCDS invokes another special type of mutation
which is called the best solution (BS) mutation [58]. MA-MCDS uses BS-mutation
to refine the best solution xbest by adding nodes gradually to xbest in order to achieve
the required coverage fCov and connectivity fCon in Eq. (2). Moreover, BS-mutation
also detects and removes redundant nodes contained in xbest to eventually obtain a
small size fCard in Eq. (2). Using this type of mutation, a new mutated child can be
computed through the following procedure.

Procedure 1  BS − mutation(xbest)

1.	 Set xnew = xbest.
2.	 If fCov(xbest) < 1 , go to Step 3. Otherwise, go to Step 5.
3.	 Randomly select a component xnew

i
 with value 0, and set it to 1.

4.	 If fCov(xnew) > fCov(x
best) , then set xbest = xnew , and go to Step 7.

5.	 Randomly select a component xnew
i

 with value 1, and set it be 0.
6.	 If fCov(xnew) > fCov(x

best) , then set xbest = xnew.
7.	 If fCon(xbest) < 1 , use Procedure 4 to increase the connectivity of xbest.
8.	 Update xbest , and return.

5.2 � Intensification Schemes

The main features of intelligent search methods are their abilities to perform wide
exploration and deep exploitation mechanism. Even if such exploration and exploi-
tation mechanisms are well-defined, it is still challenging to apply them in appro-
priate time to avoid premature convergence and unnecessary search generations.
MA-MCDS invokes four intensification mechanisms, Local Search [24, 58], Filter-
ing Search [24, 58], Solution Connecting [58] and Elite Inspiration [58] in order to
achieve a faster and a better performance.

5.2.1 � Local Search

Local Search is an intensification mechanism that adds or deletes some nodes in
order to improve a given solution x, and this process is repeated nl times. The details
of this mechanism are formally stated in Procedure 2.

Procedure 2  LocalSearch(x)

1.	 Repeat the following steps nl times.
2.	 Set x̃ = x.
3.	 If fCov(x̃) = 1 , randomly select a component x̃i with value 1. The selection prob-

ability of a component is inversely proportional to the degree of the corresponding
node. Set x̃i = 0 , and go to Step 5.

www.manaraa.com

657

1 3

Journal of Network and Systems Management (2019) 27:647–687	

4.	 If fCov(x̃) < 1 , randomly select a component x̃i with value 0. The selection prob-
ability of a component is proportional to the degree of the corresponding node.
Set x̃i = 1.

5.	 If f (x̃) > f (x) , set x = x̃ , and return.

5.2.2 � Filtering Search

Filtering Search is another intensification search mechanism. Filtering Search aims
to refine the best solution xbest found so far, if exists. If xbest represents a dominating
set, then Filtering Search filters xbest by eliminating some of unnecessary nodes con-
tained in it. Therefore, this mechanism tries to reduce the cardinality of the solution
represented by xbest without losing its coverage property. The formal description of
the Filtering Search mechanism is given in the following procedure.

Procedure 3  Filtering(xbest)

1.	 If fCov(xbest) < 1 , return.
2.	 Compute the set � = {�1,… , �|�|} of all positions of a value one in xbest.
3.	 Set xtrial = xbest.

4.	 Repeat the following Steps 5-6 for j = 1,… , |�|.
5.	 Set xtrial

�j
= 0 , and compute f (xtrial).

6.	 Update xbest to be equal to xtrial if f (xtrial) > f (xbest).

It is worthwhile to mention that the selection of the first removed node in Proce-
dure 3 may influence the selection of the subsequent nodes to be removed. There-
fore, set � of all positions of a value one in xbest is randomly ordered to give more
varieties in nodes removal. As this procedure is called several times within the main
designed meta-heuristics, this gives a high possibility to have different updates of
xbest.

5.2.3 � Solution Connecting

Solution connecting is another search mechanism which aims to increase the con-
nectivity between nodes in a solution. Specifically, Solution Connecting mechanism
tries to compose a new connected set using a minimal number of nodes existing
in the best solution xbest if it is not connected. First, Solution Connecting finds a
component C which is the largest maximal connected component in xbest . Then, all
nodes remaining in other components in xbest are denoted as set C′ . Solution Con-
necting tries to find the shortest path to connect any two nodes � and � ′ , where
� ∈ C and � ∈ C� . Hence, all intermediate nodes along the shortest path � from � to
� ′ are added to xbest . The formal description of the Solution Connecting mechanism
is stated in Procedure 4.

www.manaraa.com

658	 Journal of Network and Systems Management (2019) 27:647–687

1 3

Procedure 4  SolutionConnecting(xbest)

1.	 Set C equal to the set of nodes involved in the largest maximal connected com-
ponent in xbest , and set C′ equal to set of the other nodes involved in other com-
ponents in xbest.

2.	 If |C�| = 0 , return.
3.	 Set xtrial = xbest.

4.	 Randomly select a node � ∈ C , and � � ∈ C�.
5.	 Find the shortest path �(� , � �) from � to � ′ , and add all intermediate nodes in

�(� , � �) to xtrial.
6.	 Update xbest to be equal to xtrial if f (xtrial) > f (xbest).

It is worthwhile to mention that achieving solution connectivity starting from
the largest maximal connected component is faster than achieving it by connecting
smaller size components. The latter connecting mechanism may have better graph
coverage, however the objective function considers the coverage and connectivity
as two different terms. Moreover, the invoked search processes try to keep and/or
increase the solution coverage using different mechanisms. Another implementation
issue of Procedure 4 is to what extend we need to derive some rule to select which
node pairs should be evaluated first in Step 4. Actually, this procedure is called sev-
eral times within the main designed meta-heuristics. Therefore, the best solution
xbest which usually survives over iterations has many chances to be updated using
different choices of connecting pairs.

5.2.4 � Elite Inspiration

As a final intensification mechanism, the MA-MCDS method invokes a search
procedure called Elite Inspiration. In order to find a MCDS, the best nDS solutions
found so fare are saved in a set called Dominating Set ( DS ). A new trial solution
xCore is initialized as the intersection of the nCore best solutions saved in DS , where
nCore is a pre-specified number. If the cardinality of the solution represented by xCore
is less than that in xbest by at least two, then the zero position in xCore which is related
to the node with a maximum degree is updated to be one. This step is repeated until
the number of nodes involved in xCore becomes less than that in xbest by one, or a bet-
ter MCDS is found.

Procedure 5  [xCore] = EliteInspiration(DS, nCore)

1.	 If DS is empty, then return.
2.	 Set nF equal to the number of nodes involved in xbest , and set xCore equal to the

intersection of the nCore solutions in DS.
3.	 If

∑�V�
i=1

xCore
i

< nF − 1 , then go to Step 4. Otherwise, return.
4.	 If fCov(xCore) = 1 and fCon(xCore) = 1 , then return.
5.	 Update the zero position in xCore which gives the highest fitness, and go to Step

3.

www.manaraa.com

659

1 3

Journal of Network and Systems Management (2019) 27:647–687	

5.3 � MA‑MCDS Algorithm

The main structure of MA-MCDS is shown in Fig. 1. MA-MCDS starts with an
initial population of � chromosomes. Each individual in the population represents
a trial solution to the MCDS problem. In order to evaluate and rank chromosomes
in a population, a fitness function based on the objective function f (see Eq. (1) and
Eq.(2)) is implemented. Three operators must be specified to construct the complete
structure of the GA procedure; selection, crossover and mutation operators beside
the four intensification schemes. MA-MCDS applies Local Search, Procedure 2,
to improve the trial solutions. Then, in each generation the population is updated
through the genetic operators. Specifically, good individuals are selected based on
the linear ranking selection [56] in order to be used by other operators: crossover
and mutation. MA-MCDS invokes the standard one-point crossover and uniform
mutation [57], as well as Local Search Procedure to update the current population.
Whenever a new better solution xbest is found, MA-MCDS invokes Filtering Search
in order to improve it. Moreover, MA-MCDS applies Procedure 4 to interconnect
the disconnected nodes in xbest to increase the connectivity between nodes in xbest .

Fig. 1   MA-MCDS flowchart

www.manaraa.com

660	 Journal of Network and Systems Management (2019) 27:647–687

1 3

The search may be terminated if number of generations exceeds gmax . Finally, the
Procedure 5 is applied as a final intensification mechanism. The detailed structure of
MA-MCDS is presented in the following formal algorithm.

Algorithm 6  MA-MCDS

1. Initialization.	� Set values of � , gmax , nCore , nl . Set the
crossover and mutation probabilities
pc ∈ (0, 1) and pm ∈ (0, 1) , respectively.
Set DS to be an empty set. Generate an
initial population P0 of size �.

2. Fitness Evaluation & Local Search.	� Evaluate the fitness function of all indi-
viduals in P0 by using the Eq. (1), and
then apply Local Search (Procedure 2) to
improve the trial solutions in P0 . Set the
generation counter t = 0.

3. Parent Selection.	� Select an intermediate population P′
t
 from

the current population Pt using the linear
ranking selection.

4. Crossover.	� Apply the standard one-point crossover
to chromosomes in P′

t
 , and update P′

t
.

5. Mutation.	� Apply the standard uniform mutation to
chromosomes in P′

t
.

6. Fitness Evaluation.	� Evaluate the fitness function of all gener-
ated children in the updated P′

t
.

7. BS-Mutation.	� Apply the BS-mutation described in Pro-
cedure 1 on the best solution in P′

t
 , and

update it.
8. Survival Selection.	� Set Pt+1 = P�

t
 . If the best solution in Pt+1

is worse than the best solution in Pt , then
replace the worst solution in Pt+1 by the
best solution in P′

t
.

9. Local Search.	� Apply Local Search (Procedure rm 2)
starting from each individual in Pt+1 in
order to improve them, update DS and
xbest.

10. Filtering Search.	� If xbest represents a dominating set, then
apply Filtering Search (Procedure 3) in
order to reduce its cardinality, and update
DS and xbest.

11. Connecting.	� Apply Procedure 4 on xbest to increase
the connectivity between nodes in xbest ,
update DS and xbest.

www.manaraa.com

661

1 3

Journal of Network and Systems Management (2019) 27:647–687	

12. Stopping Condition.	� If termination condition is satisfied, then
go to Step 13. Otherwise, set t = t + 1 ,
and go to Step 3.

13. Final Intensification.	� Apply Procedure 5 to obtain xCore .
Update DS by xCore if a better solution is
found, and terminate.

6 � Simulated Annealing for the MCDS Problem

In this section, we present the SA-MCDS method to solve the MCDS problem
addressed in this research. First, we introduce a simple search procedure called
the Stochastic Local Search (SLS) [59] which updates an input solution by adding,
deleting and/or swapping the nodes contained in this solution in a stochastic way.
Then, the SA-MCDS method globalizes the SLS procedure using the annealing
acceptance and cooling schedule concepts. In the following, we give a description of
the SLS procedure, then we show how it can be enhanced by the simulated anneal-
ing methodology.

6.1 � Stochastic Local Search

In this section, we use the SLS method [59] for the MCDS problem. The idea of the
SLS is to improve a solution by altering its nodes. First, we try to improve the solu-
tion quality by adding or deleting some nodes. If no improvement could be achieved,
we exchange some of the solution nodes with other nodes. Specifically, if the cur-
rent solution x represents a connected dominating set, then SLS tries to improve it
by reducing its cardinality. This can be achieve by removing a node with a small
degree from the node set represented by x. On the other hand, if x dose not represent
a dominating set, then SLS tries to increase the solution coverage by adding a new
node with a high degree. Another possibility to improve x is to exchange one node
with small degree contained in x with another one with a high degree from the nodes
that are not contained in x. The processes of removing, adding and replacing nodes
are done in a probabilistic manner. The formal description of the SLS is shown in
Procedure 7.

Procedure 7  Stochastic Local Search(x)

1.	 Set x̀ = x.
2.	 If fCov(x̀) = 1 , then go to Step 3. Otherwise, go to Step 4.
3.	 Select a component x̀i with value 1 randomly with a probability inversely propor-

tional to the degree of its corresponding node. Set x̀i = 0 , and go to Step 6.
4.	 Select a component x̀i with value 0 randomly with a probability proportional to

the degree of its corresponding node. Set x̀i = 1.

www.manaraa.com

662	 Journal of Network and Systems Management (2019) 27:647–687

1 3

5.	 If fCov(x̀) < fCov(x) , then select a component x̀j with value 1 as in Step 3 and a
component x̀k with value 0 as in Step 4, and swap their values, i.e., x̀j = 0, x̀k = 1.

6.	 If f (x̀) ≤ f (x) , then stop. Otherwise, set x = x̀ , and go to Step 1.

6.2 � SA‑MCDS Algorithm

In this section, the details of the second proposed method which is called the SA-
MCDS method are explained. As a point-to-point method, SA-MCDS starts with
an initial solution which can be randomly chosen from the search space. The SA-
MCDS search process tries to select trial solutions in the neighborhood of the cur-
rent solution by adding a random displacements to the latter. Then, the objective
function defined by Eq. (1) is used to evaluate the quality of both solutions. A move
can be certainly accepted if the new solution has a better objective value than that
of the current one. Otherwise, the move is accepted with a probability depending
on the difference between the objective function values. Thereby, a worse trial solu-
tion can be accepted with the probability p = exp(

�f

T
) ; where �f is the amount of

the decrease in the objective value caused by the downhill move and T is a control
parameter called the “annealing temperature”. This parameter T is used to control
the acceptance of inferior trial solutions. At the start of a search the temperature
is initialized to be Tmax which should be high enough to allow almost unrestricted
movement around the search space. The temperature Tmax is gradually reduced
during the search constraining the acceptance of inferior trial solutions. This tem-
perature reduction process is called the “cooling schedule,” and it continues until T
reaches the lower limit temperature Tmin.

SA-MCDS follows the above-mentioned framework of SA as shown in Fig. 2
with some modifications. Therefore, an initial solution x0 is randomly selected in the
search space. In each iteration k, a trial solution y is generated in the neighborhood
of the current iterate solution xk . This generation process is done through the follow-
ing cases.

•	 If xk represents a dominating set (i.e., fCov(xk) = 1 ), then y is generated in the
manner that reduces the cardinality of xk as in Step 3 of SLS Procedure 7. This
generation process is called “Node-Reduction”.

•	 If xk does not represent a dominating set (i.e., fCov(xk) < 1 ), then y is generated in
the manner that increases the number of nodes covered by xk as in Step 4 of SLS
Procedure 7. This generation process is called “Node-Addition”.

•	 If the Node-Addition process fails to improve f (xk) , then another process called
“Node-Swapping” is applied as in Step 5 of SLS Procedure 7.

In these generation processes, the annealing acceptance mechanism is applied in
order to accept or reject the generated trial solution y. These steps are repeated
M times, where M is the epoch length [20]. At the end of each epoch, Procedure

www.manaraa.com

663

1 3

Journal of Network and Systems Management (2019) 27:647–687	

4 is recalled in order to increase the connectivity of the final solution obtained
in this epoch. The formal description of SA-MCDS is stated in the following
algorithm.

Fig. 2   SA-MCDS flowchart

www.manaraa.com

664	 Journal of Network and Systems Management (2019) 27:647–687

1 3

Algorithm 8  SA-MCDS

1. Initialization. Choose the cooling schedule parameters: initial temperature
Tmax , final temperature Tmin , cooling ratio � ∈ (0, 1) , and the epoch length M. Set
T = Tmax , and generate an initial solution x0 . Set xbest = x0 , and k = 0.
2. Evaluation. Evaluate f (xk) using Eq. (1).
3. Main Loop. Repeat the following Steps (3.1–3.5) M times.

3.1. Set y = xk . If fCov(xk) = 1 , then go to Step 3.2. Otherwise, go to Step 3.3.
3.2. Node-Reduction.

3.2.1. Randomly select a component yi with value 1 as in Step 3 of SLS Pro-
cedure 7, set yi = 0.

3.2.2. If f (y) > f (xk) , set xk+1 = y , update xbest , set k = k + 1 , and go to Step
4.

3.2.3. The trial solution y is accepted with probability p = exp(�f∕T) , where
�f = f (y) − f (xk).

3.2.4. If y is accepted, then set xk+1 = y . Otherwise, set xk+1 = xk.
3.2.5. Set k = k + 1 , and go to Step 4.

3.3. Node-Addition.

3.3.1. Randomly select a component yi with value 0 as in Step 4 of SLS Pro-
cedure 7, set yi = 1.

3.3.2. If f (y) > f (xk) , set xk+1 = y , update xbest.
3.3.3. Set k = k + 1 , and go to Step 4.

3.4. Node-Swapping.

3.4.1. Set z = xk , and randomly swap a component zi with value 1 with a com-
ponent zj with value 0 as in Step 5 of SLS Procedure 7, i.e., zi = 0, zj = 1.

3.4.2. If f (z) > f (xk) , then set xk+1 = z , update xbest , set k = k + 1 , and go to
Step 4.

3.4.3. The trial solution z is accepted with probability p = exp(�f∕T) , where
�f = f (z) − f (xk).

3.4.4. If z is accepted, then set xk+1 = z . Otherwise, set xk+1 = xk.
3.4.5. Set k = k + 1.

3.5. Epoch Length Condition. If the epoch length M is attained, then go to Step
4. Otherwise, apply Solution Connecting (Procedure 4) to improve xk , update xbest ,
and go to Step 3.1.

4. Stopping Condition. If T > Tmin , then set T = �T  , and go to Step 3. Other-
wise, terminate.

7 � Experimental Setup

In this section, we evaluate both MA-MCDS and SA-MCDS algorithms. To com-
pare the performance of our algorithms against several reference algorithms, we
used several test graph from the literature [4, 25, 52, 60].

www.manaraa.com

665

1 3

Journal of Network and Systems Management (2019) 27:647–687	

We implemented our proposed MA-MCDS and SA-MCDS algorithms in MAT-
LAB. Each MATLAB code was run 20 times with different initial solutions and
results of 20 runs for each algorithm were averaged. We present the experimental
test graphs and parameter values setting of our algorithms before results discussion.

7.1 � Test Problems

Two different groups of test problems for the MCDS problem were performed. In the
first group, test graphs have examples with 400 and 800 nodes and we named this group
by “Test Graphs”. The other group of graphs are related to network design graphs with
10–400 nodes and is denoted by “Network Graphs”. The number of instance graphs
that we generated are 28 and 60 ones for the test and network graphs, respectively.

7.1.1 � Test Graphs

We adopted a referenced test graph construction procedure explained in [60]. To add
a connectivity property on the dominating nodes, some modifications has been done
to the original procedure. The modified procedure generates graphs with specific
connected domination numbers and densities. The graph density p is equal to the
number of edges in the graph divided by the maximum number of edges in a graph
with the same number of nodes. This maximum number of edges is equal to
n(n − 1)∕2 for an n nodes’ undirected graph. We used a generation procedure similar
to that presented in [60] to produce test graphs Gn

p,d
 , where d is the connected domi-

nation number. V is the set of nodes, and |V| = n . For each graph, we generated a
number of problem instances according to density parameter (p) and connected
domination number parameter (d) as shown in the 3-rd column and the 4-th column
in Table 1. Initially, V is partition into d nonempty subsets V1,V2,… ,Vd . Nodes
xi, yi ∈ Vi for each i = 1,… , d , ( xi and yi do not need to be distinct) are chosen. Then
we have the set X = {x1, x2,… , xd} , add edges joining each disconnected node xi in
X to another node in X in order to connect X. Finally, additional edges are added to
get the required density, at the same time making sure that yi is not connected to any
node not in Vi , for i = 1,… , d . This constraint guarantees that the connected

Table 1   Test problems

Test graphs No. of nodes Density (p) Connected domination no. (d) No. of
Problem
instances

G400

0.1,d
400 0.1 8, 11, 14, 18, 23 5

G400

0.3,d
400 0.3 3, 5, 8, 11, 14 5

G400

0.5,d
400 0.5 3, 5, 8, 11 4

G800

0.1,d
800 0.1 8, 11, 14, 18, 22, 26 6

G800

0.3,d
800 0.3 3, 5, 9, 13 4

G800

0.5,d
800 0.5 3, 6, 9, 12 4

www.manaraa.com

666	 Journal of Network and Systems Management (2019) 27:647–687

1 3

domination number of the graph is equal to d. Problem instances for each graph is
shown in the last column in Table 1. To be more specific, we obtained 28 problem
instances form graphs G400

p,d
 and G800

p,d
.

7.1.2 � Network Graphs

We used graph generation method available in the literature to generate random
graphs, see [4]. Graph nodes N are randomly deployed to a fixed area of 100 × 100 .
Next, the mobile nodes’ transmission range r is set to three different values: 25, 50,
75. First we set the transmitter range r to 25, and we increase the number of mobile
nodes N from 20 to 100 with a step of 20. Then we set r to 50, and increase N from
10 to 80 with a step of 10. Finally, r is set to 75, and N is increased from 10 to 60
with a step of 10. As the density of generated graphs is directly proportional to the
mobile nodes’ transmission range, we can control the density of generated graphs.
thus, we can conclude that there is a link between two nodes if the distance between
them is less than r.

Another group of network graphs is given as ad hoc network clustering instances
which are described in Table 2, see [52]. In which, 8 different network instances are
used; all of them occupy the same area with different number of nodes N for each
instance starting from 80 up to 400 nodes. Also, we run experiments for each net-
work size with the shown transmission ranges r. Thus, we covered different sizes of
networks in our experiments.

7.2 � Parameters Setting

We set the initial values of control parameters according to our numerical experi-
ments or according to known common settings in the literature. Parameters’ tuning
process final values could have a positive impact on the two proposed algorithms’
efficiency. Consequently, parameters’ tuning process is discussed in this section.

Table 2   Ad hoc network
clustering instances [52]

Network Area ( L × L) No. of nodes (N) Range (r)

Net1 400 × 400 80 60–120

Net2 600 × 600 100 80–120

Net3 700 × 700 200 70–120

Net4 1000 × 1000 200 100–160

Net5 1500 × 1500 250 130–160

Net6 2000 × 2000 300 200–230

Net7 2500 × 2500 350 200–230

Net8 3000 × 3000 400 210–240

www.manaraa.com

667

1 3

Journal of Network and Systems Management (2019) 27:647–687	

7.2.1 � MA‑MCDS Parameters

Table 3 shows all parameters used in MA-MCDS associated with their values.
Parameters’ values are set according to our numerical experiments or according to
known common settings in the literature. MA-MCDS parameters are categorized
into four groups:

•	 The Population Parameter: � is the population size.
•	 The GA operator Parameters: pc and pm are crossover probability and mutation

probability, respectively.
•	 The Intensification Parameters: nl is the number of nodes to apply Local Search ,

nDS is the maximum number of the best solutions used to update DS, and nCore is
the certain number of the nDS best solutions used to compute xCore.

•	 the Termination Parameter: gmax is the maximum number of generations.

We used different values of these parameters to test MA-MCDS performance.
Initially, the population size � was set to 40. The preliminary numerical experiments
showed that this setting was enough to obtain the best solution during search process
in the most of runs. The value of crossover probability pc is set to 0.8 and the value
of mutation probability pm is set to 0.05 improve the initial population. The numbers
nl , nDS and nCore used in the Local Search and the best connected dominating sets
are set equal to 2, 10 and 3, respectively, which help MA-MCDS to improve the
best connected dominating set found so far. The preliminary numerical experiments
showed that these settings were reasonable to filter the elite dominating set found so
far. Finally, the maximum number gmax of generations is set to be equal to 100. The
preliminary numerical experiments showed that this setting was enough to avoid
premature termination.

7.2.2 � SA‑MCDS Parameters

Parameters set up of SA-MCDS algorithm will be discussed in this section to wrap-
up the algorithm description stated in Sect. 6. Parameters’ values are set either

Table 3   The MA-MCDS parameters

Parameter Definition Value

� Population size 40
pc Crossover probability 0.8
pm Mutation probability 0.05
nl Number of iterations in Local Search 2
nDS Max number of the best solutions used to update DS 10
nCore The number of the best solutions used to compute xCore 4
gmax Max number of generations 100

www.manaraa.com

668	 Journal of Network and Systems Management (2019) 27:647–687

1 3

according to our numerical experiments or according to known common settings in
the literature. SA-MCDS parameters and their definitions are presented in Table 4.

SA-MCDS parameters are divided into two categories:

•	 Cooling schedule A large value is assigned to the initial temperature Tmax to let
the initial probability of accepting transition close to 1. in addition to the initial
solution x0 , another solution y is generated in a neighborhood of x0 to calculate
Tmax as shown in [17, 21]. Therefore, Tmax is given by:

 The temperature is reduced with the cooling ratio � which usually is assigned
a value from the interval [0.9, 0.99]. We assigned 0.95 to � as recommended
in [21]. The epoch length M is set to 15. The epoch length M represents num-
ber of trials allowed at each temperature. Increasing its value has no significant
improvement on the quality of the obtained solutions, on the other hand decreas-
ing its value has an impact on solutions’ quality.

•	 Termination criterion The termination criterion of SA-MCDS algorithm is
intended to reflect the progress of this algorithm. So, it is terminated when the
cooling schedule is completed. The cooling schedule is terminated when the tem-
perature decreases to a predefined minimum temperature Tmin . As an observation,
we noticed that setting Tmin equal to min(10−7, 10−10Tmax) could give a complete
cooling schedule. Hence, the acceptance probability at the end is almost zero.

7.2.3 � Objective Function Weights

The performance of the objective function with different values of the weights �1 ,
�2 and �3 has been studied. The following settings are tested in order to choose the
best setting of the objective function weights.

•	 Weights setting 1: �1 = 0.2 , �2 = 0.4 , �3 = 0.4.
•	 Weights setting 2: �1 = 0.4 , �2 = 0.2 , �3 = 0.4.
•	 Weights setting 3: �1 = 0.4 , �2 = 0.4 , �3 = 0.2.
•	 Weights setting 4: �1 = 0.3 , �2 = 0.3 , �3 = 0.4.
•	 Weights setting 5: �1 = 0.3 , �2 = 0.4 , �3 = 0.3.
•	 Weights setting 6: �1 = 0.4 , �2 = 0.3 , �3 = 0.3.

Tmax = −
1

ln(0.9)
|f (y) − f (x0)|.

Table 4   The SA-MCDS
parameters

Parameter Definition Value

M Epoch length 15
� Cooling ratio 0.95
Tmax Initial temperature Tmax = −

1

ln(0.9)
|f (y) − f (x0)|

Tmin Final temperature min(10−7, 10−10Tmax)

www.manaraa.com

669

1 3

Journal of Network and Systems Management (2019) 27:647–687	

Different measures have been presented in Fig. 3 in order to analyze the performance
of the objective function using 8 different network graphs. These measures are:

•	 The number of generations or iterations in which the graph coverage was
achieved.

•	 The number of generations or iterations in which the connectivity of the best
solution was achieved.

•	 The approximate domination numbers obtained by the proposed algorithms
using the different weight settings.

Figure 3 shows that changes of the parameters values weight are not much sensitive
on achieving graph coverage. Actually, both methods can obtain solutions which
cover the whole networks within few generations or iterations using any of the con-
sidered weight setting. Moreover, achieving the connectivity of the best solutions
was occurred later than achieving the graph coverage. All weight settings have close

Net1120 Net2120 Net3120 Net4160 Net5160 Net6230 Net7230 Net8240

0

100

200

300

400

G
en

er
at

io
ns

MA-MCDS - Coverage Generation Numbers
Weights Setting 1: 0.2, 0.4, 0.4
Weights Setting 2: 0.4, 0.2, 0.4
Weights Setting 3: 0.4, 0.4, 0.2
Weights Setting 4: 0.3, 0.3, 0.4
Weights Setting 5: 0.3, 0.4, 0.3
Weights Setting 6: 0.4, 0.3, 0.3

Net1120 Net2120 Net3120 Net4160 Net5160 Net6230 Net7230 Net8240

0

100

200

300

400

Ite
ra

tio
ns

SA-MCDS - Coverage Iteration Numbers
Weights Setting 1: 0.2, 0.4, 0.4
Weights Setting 2: 0.4, 0.2, 0.4
Weights Setting 3: 0.4, 0.4, 0.2
Weights Setting 4: 0.3, 0.3, 0.4
Weights Setting 5: 0.3, 0.4, 0.3
Weights Setting 6: 0.4, 0.3, 0.3

Net1120 Net2120 Net3120 Net4160 Net5160 Net6230 Net7230 Net8240

0

100

200

300

400

G
en

er
at

io
ns

MA-MCDS - Connectivity Generation Numbers
Weights Setting 1: 0.2, 0.4, 0.4
Weights Setting 2: 0.4, 0.2, 0.4
Weights Setting 3: 0.4, 0.4, 0.2
Weights Setting 4: 0.3, 0.3, 0.4
Weights Setting 5: 0.3, 0.4, 0.3
Weights Setting 6: 0.4, 0.3, 0.3

Net1120 Net2120 Net3120 Net4160 Net5160 Net6230 Net7230 Net8240

0

100

200

300

400

Ite
ra

tio
ns

SA-MCDS - Connectivity Iteration Numbers
Weights Setting 1: 0.2, 0.4, 0.4
Weights Setting 2: 0.4, 0.2, 0.4
Weights Setting 3: 0.4, 0.4, 0.2
Weights Setting 4: 0.3, 0.3, 0.4
Weights Setting 5: 0.3, 0.4, 0.3
Weights Setting 6: 0.4, 0.3, 0.3

Net1120 Net2120 Net3120 Net4160 Net5160 Net6230 Net7230 Net8240

0

50

100

150

200

250

300

G
en

er
at

io
ns

MA-MCDS - Approximate Domination Numbers
Weights Setting 1: 0.2, 0.4, 0.4
Weights Setting 2: 0.4, 0.2, 0.4
Weights Setting 3: 0.4, 0.4, 0.2
Weights Setting 4: 0.3, 0.3, 0.4
Weights Setting 5: 0.3, 0.4, 0.3
Weights Setting 6: 0.4, 0.3, 0.3

Net1120 Net2120 Net3120 Net4160 Net5160 Net6230 Net7230 Net8240

0

50

100

150

200

250

300

Ite
ra

tio
ns

SA-MCDS - Approximate Domination Numbers
Weights Setting 1: 0.2, 0.4, 0.4
Weights Setting 2: 0.4, 0.2, 0.4
Weights Setting 3: 0.4, 0.4, 0.2
Weights Setting 4: 0.3, 0.3, 0.4
Weights Setting 5: 0.3, 0.4, 0.3
Weights Setting 6: 0.4, 0.3, 0.3

Fig. 3   The performance of the objective function with different weight values

www.manaraa.com

670	 Journal of Network and Systems Management (2019) 27:647–687

1 3

performance regarding the achievement of the connectivity. However, the weight
setting 6 gives some late connectivity results with the SA-MCDS method. Finally,
the weight settings 3 and 6 could help the GA-MCDS method to obtain the best
approximate domination numbers, the weight settings 3 and 4 did the same with the
SA-MCDS method. Therefore, the weight setting 3 is selected for the both methods.

7.3 � Procedural Analysis

The proposed MA-MCDS method contains three search procedures which are not
related to the main genetic procedures. These procedures are the Filtering, Local
Search and Final Intensification. In this section, we discuss the need for invoking
such procedures in order to enhance the main proposed method. Figure 4 shows how
these procedures affect the performance of the MA-MCDS. For two experimental
graphs, three independent runs were carried out. The first run is a complete MA-
MCDS method, while the second and the third ones are for MA-MCDS method
without Filtering and Local Search, respectively. It is clear that Filtering and Local
Search is essential for achieving better performance of MA-MCDS. Moreover, the
Final Intensification could improve the obtained solutions as shown from the final
beak of the MA-MCDS curve for the test graph on the right hand side of Fig. 4.

8 � Numerical Results

In this section, we investigate the performance of two algorithms that we intro-
duced in Sects. 5 and 6. We have four comparisons results, the first comparison is
between MA-MCDS and the standard GA using graphs G400

p,d
 , and the comparison

results of this are shown in Table 5. The second performance comparison is
between SA-MCDS and SLS using graphs G400

p,d
 , and the results of this compari-

son are reported in Table 6. Then, we compare the results of MA-MCDS with
those of SA-MCDS, and the results of this comparison are reported in Tables 7

Generations
0

10
20
30
40
50
60
70
80
90

100

A
pp

ro
xi

m
at

e
D

om
in

at
io

n
N

um
be

rs Net1
60

MA-MCDS
MA-MCDS without Filtering
MA-MCDS without Local Search

Generations
0

20
40
60
80

100
120
140
160
180
200

A
pp

ro
xi

m
at

e
D

om
in

at
io

n
N

um
be

rs Net4
100

MA-MCDS
MA-MCDS without Filtering
MA-MCDS without Local Search

Fig. 4   The performance of the MA-MCDS procedures

www.manaraa.com

671

1 3

Journal of Network and Systems Management (2019) 27:647–687	

and 8 . In the final comparison, we compare the results of MA-MCDS and SA-
MCDS against the results of other benchmark methods presented in [4, 25, 52].

We used different quantities in making comparisons to measure the perfor-
mance of each algorithm. These quantities are computed as follows.

Table 5   Results of running
MA-MCDS and GA on G400

p,d

n p Opt. GA MA-MCDS

Avg. Hits(%) Avg. Hits(%)

400 0.1 8 137.90 0 8.05 95
400 0.1 11 151.25 0 11 100
400 0.1 14 181.15 0 14 100
400 0.1 18 204.55 0 18 100
400 0.1 23 199.30 0 23 100
400 0.3 3 52.85 0 4.25 80
400 0.3 5 98.45 0 5 100
400 0.3 8 103.95 0 8 100
400 0.3 11 150.40 0 11.5 90
400 0.3 14 195.90 0 21.05 55
400 0.5 3 26.25 0 3 100
400 0.5 5 94.75 0 5.9 90
400 0.5 8 116.05 0 8 100
400 0.5 11 163.50 0 11 100

Table 6   Results of running
SA-MCDS and SLS on G400

p,d

n p Opt. SLS SA-MCDS

Avg. Hits(%) Avg. Hits(%)

400 0.1 8 13.35 65 8.35 90
400 0.1 11 14.95 45 11 100
400 0.1 14 21.15 50 14 100
400 0.1 18 21.80 50 18 100
400 0.1 23 26.75 60 23.25 95
400 0.3 3 7.75 50 3 100
400 0.3 5 6.75 55 5 100
400 0.3 8 11.20 40 8 100
400 0.3 11 19.50 50 11 100
400 0.3 14 16.75 60 14 100
400 0.5 3 4.85 45 3 100
400 0.5 5 7.10 55 5 100
400 0.5 8 11.45 45 8 100
400 0.5 11 11.95 75 11 100

www.manaraa.com

672	 Journal of Network and Systems Management (2019) 27:647–687

1 3

•	 Minimum number (Min.) This measure gives the minimum number of nodes
in the best solution found in the all independent runs, this represents an
approximate connected domination number of the given graph.

•	 Average number (Avg.) This measure gives the average number of nodes in
the best solutions found in the independent runs.

•	 Percentage (Hits). This measure gives the percentage of the number of times
the optimal solution found throughout the independent runs.

•	 Average number (f-Evals. Avg.) This measure gives the average number of
objective function evaluations over the independent runs.

•	 Standard deviation (f-Evals. Std.) This measure indicates the standard devia-
tion of the objective function evaluations over the independent runs.

We use the Wilcoxon rank-sum test [61, 62] to check the if there are statisti-
cal difference in results of our two proposed algorithms MA-MCDS, SA-MCDS
and other methods. The level of significance used in the tests is 0.05. It is a pair-
wise test that detect significant differences in the behavior of two methods. We
describe the test computations below.

We define di as the difference between performance scores of the two algo-
rithms on ith out of N different results. Differences are ranked depending on
their absolute values. In case of a tie average, ranks are assigned. R+ is defined
as the sum of ranks for the functions on which the first algorithm performs better
than the second; and R− is the sum of ranks for the opposite. Ranks of di = 0 are
split evenly among the sums; if there is an odd number of them, one is ignored:

8.1 � Performance Comparison of MA‑MCDS and GA for Graphs G400

p,d

The results of this comparison are reported in Table 5 and summarized in Fig. 5.
All different algorithms have the same number of runs for each graph—we
ran them 20 times. We considered three different density values: 0.1, 0.3, and
0.5. The connected domination number of the graph is indicated in the “Opt.”
column. The results show that MA-MCDS outperforms standard GA for all
instances of the MCDS problem in terms average values of the obtained solu-
tions. In addition, MA-MCDS could obtain larger percentages (Hits) of hitting
the optimal solutions for all instances. GA could not outperform MA-MCDS for
any instance of the MCDS problem. According to statistical results reported in
Table 9, MA-MCDS demonstrates a superior performance against GA for all
instances.

R+ =
∑

di>0

rank(di) +
1

2

∑

di=0

rank(di),

R− =
∑

di<0

rank(di) +
1

2

∑

di=0

rank(di).

www.manaraa.com

673

1 3

Journal of Network and Systems Management (2019) 27:647–687	

8.2 � Performance Comparison of SLS and SA‑MCDS for Graphs G400

p,d

In this comparison, we compared SA-MCDS with SLS method presented in [59],
and results of this comparison are reported in Table 6 and summarized in Fig. 5. All
methods have the same number of runs for each graph, which is 20 times. The com-
parison between the two methods shows that SA-MCDS outperforms SLS for all
instances of the MCDS problem. More precisely, the average results of SA-MCDS
for all instances are still better than those of SLS. Moreover, SA-MCDS gives con-
siderably larger percentages of hits for all instances. This means that the annealing
acceptance and the cooling schedule could help SA-MCDS to reach better solutions
and escape from local solutions. According to statistical results reported in Table 9,
SA-MCDS demonstrates a superior performance against SLS for all instances in
terms of the success rates of finding the optimal solutions. Moreover, SA-MCDS
could outperform SLS in terms of the average of the obtained solutions.

8.3 � Performance Comparison of MA‑MCDS and SA‑MCDS

For performance evaluation of our proposed algorithms, we need to measure the
size of the MCDS produced by the MA-MCDS algorithm and compare it with the
one produced by the SA-MCDS algorithm in addition to the computational cost
for each of them. We reported the comparison results in Tables 7 and 8, for graphs
G400

p,d
 and G800

p,d
 , respectively. Figures 5 and 6 summarize the approximate domina-

tion numbers and number of hits obtained by the two methods shown in Tables 7
and 8, respectively. Figure 7 also shows processing time and function evaluations
of each algorithm using some test networks. This figure shows the averages of
processing time and function evaluations for graphs G400

p,d
 and G800

p,d
 taken over 20

independent runs and the error bars represent the standard deviation. The two
methods have similar performance regarding the processing time and number of
function evaluations. It is clear from the results in Tables 7 and 8 that SA-MCDS
performs better than MA-MCDS to obtain the optimum (d). Accordingly, It is

Networks G400
p,d

0
20
40
60
80

100
120
140
160
180
200
220

D
om

in
at

io
n

N
um

be
rs

Averages of Approximate Domination Numbers

GA
SLS
MA-MCDS
SA-MCDS

Networks G400
p,d

0
10
20
30
40
50
60
70
80
90

100

H
its

 (%
)

Percentages of Optimal Solution Hits

GA
SLS
MA-MCDS
SA-MCDS

Fig. 5   Results of running GA, SLS, MA-MCDS and SA-MCDS and on G400

p,d

www.manaraa.com

674	 Journal of Network and Systems Management (2019) 27:647–687

1 3

Table 7   Results of running MA-MCDS and SA-MCDS on G400

p,d

n p Opt. MA-MCDS SA-MCDS

Avg. Hits(%) f-Evals. Avg. Hits(%) f-Evals.

Avg. Std. Avg. Std.

400 0.1 8 8.05 95 11565.3 74.6 8.35 90 9751.1 239.8
400 0.1 11 11 100 11645.0 61.3 11 100 9495.6 33.4
400 0.1 14 14 100 11669.2 56.5 14 100 9470.7 93.1
400 0.1 18 18 100 11697.5 62.7 18 100 9478.7 75.3
400 0.1 23 23 100 11726.7 68.6 23.25 95 9433.8 51.1
400 0.3 3 4.25 80 11679.5 73.2 3 100 9712.4 134.1
400 0.3 5 5 100 11623.3 55.3 5 100 9686.9 139.5
400 0.3 8 8 100 11632.6 79.4 8 100 9775.3 126.2
400 0.3 11 11.5 90 11335.5 42.3 11 100 9443.2 68.6
400 0.3 14 21.05 55 11402.9 43.7 14 100 9477.7 112.0
400 0.5 3 3 100 11384.7 34.2 3 100 9662.5 127.4
400 0.5 5 5.9 90 11604.7 72.6 5 100 9730.0 208.3
400 0.5 8 8 100 11557.2 75.3 8 100 9585.4 109.1
400 0.5 11 11 100 11556.9 78.6 11 100 9482.9 40.5

Table 8   Results of running MA-MCDS and SA-MCDS on G800

p,d

n p Opt. MA-MCDS SA-MCDS

Avg. Hits(%) f-Evals. Avg. Hits(%) f-Evals.

Avg. Std. Avg. Std.

800 0.1 8 8.05 95 11747.0 60.6 8 100 4853.2 79.9
800 0.1 11 11.05 95 11706.1 60.5 11 100 4975.1 72.4
800 0.1 14 14 100 11786.1 79.8 14 100 4858.6 43.9
800 0.1 18 18 100 11736.1 76.3 18 100 4990.5 77.6
800 0.1 22 22 100 11921.0 204.7 22 100 4828.2 38.8
800 0.1 26 26 100 11891.8 120.5 26 100 4820.2 39.3
800 0.3 3 4.7 70 11710.9 93.8 3 100 5086.3 123.0
800 0.3 5 7.7 50 12013.4 401.1 5 100 5154.4 143.4
800 0.3 9 9.9 85 11725.6 56.6 9 100 5205.5 238.4
800 0.3 13 13 100 11685.5 66.2 13 100 4889.6 13.9
800 0.5 3 6.05 40 11786.5 183.1 3 100 5047.6 174.8
800 0.5 6 7.65 55 11858.4 255.3 6 100 5015.5 140.2
800 0.5 9 12.95 35 11969.0 303.5 9 100 5117.8 198.2
800 0.5 12 12 100 11704.3 48.1 12 100 4994.6 46.6

www.manaraa.com

675

1 3

Journal of Network and Systems Management (2019) 27:647–687	

clear from the difference in average results that SA-MCDS has a better perfor-
mance for most problem instances. In addition, SA-MCDS show a noticeably
higher percentages of hits for many problem instances. Moreover, Fig. 7 shows
that SA-MCDS could find the solutions faster than MA-MCDS. Results in
Tables 7 and 8 and Fig. 7 show the difference between MA-MCDS and

Networks G800
p,d

0

5

10

15

20

25

30

D
om

in
at

io
n

N
um

be
rs

Averages of Approximate Domination Numbers

MA-MCDS
SA-MCDS

Networks G800
p,d

0
10
20
30
40
50
60
70
80
90

100

H
its

 (%
)

Percentages of Optimal Solution Hits

MA-MCDS
SA-MCDS

Fig. 6   Results of running MA-MCDS and SA-MCDS on G800

p,d

Networks G400
p,d

0

5

10

15

20

25

30

35

40

P
ro

ce
ss

in
g

Ti
m

e
(in

 s
ec

on
ds

)

MA-MCDS
SA-MCDS

Networks G400
p,d

0

2000

4000

6000

8000

10000

12000
N

o.
 o

f F
un

ct
io

n
E

va
lu

at
io

ns

MA-MCDS
SA-MCDS

Networks G800
p,d

0

5

10

15

20

25

30

35

40

P
ro

ce
ss

in
g

Ti
m

e
(in

 s
ec

on
ds

)

MA-MCDS
SA-MCDS

Networks G800
p,d

0

2000

4000

6000

8000

10000

12000

N
o.

 o
f F

un
ct

io
n

E
va

lu
at

io
ns

MA-MCDS
SA-MCDS

Fig. 7   The processing time and numbers of function evaluations for running MA-MCDS and SA-MCDS
on G400

p,d
 and G800

p,d

www.manaraa.com

676	 Journal of Network and Systems Management (2019) 27:647–687

1 3

SA-MCDS methods in terms of the computational costs of the objective function
and processing time. These results show that SA-MCDS could find the solutions
faster than MA-MCDS.

According to the significance test by rank-sum test, there is no significant dif-
ference at level 0.05 between the two proposed methods in terms of the solution
averages as shown in Table 9. However, SA-MCDS shows a better performance
compared to MA-MCDS in terms of the f-Evals. and hits percentages. By conven-
tional criteria, this difference in f-Evals. and percentage hits is considered to be
extremely statistically significant.

Some of classical network metrics have been considered in order to analyze the
performance of the proposed methods. These metrics are the diameter, average
node degree, approximate domination numbers and convergence time. Figure 8
shows the average values of these metrics calculated from the obtained solutions
by the proposed algorithms over 10 independent runs on Net1 , Net2 , … , Net8 . Two
types of diameters are calculated; the unweighted one in which all edges are equal
in cost, and the weighted one in which the edge weight is the Euclidean distance
between the nodes connected by this edge. The diameter values of the connected
dominating sets obtained by the proposed methods are close to each other. How-
ever, those diameter values are slightly greater than the diameter values of the
whole graph when the graph size is increased. In conclusion, the obtained con-
nected dominating sets are located in the middle of the network graphs. For the
node degree metrics, the minimum, average and maximum values of the obtained
connected dominating sets are represented in Fig. 8, as well as those values of
the whole network graphs. Fore each graph, those node degree values of the con-
nected dominating sets and the whole graph are close to each other. However,
those diameter values are slightly lower than the diameter values of the whole
graph when the graph size is increased. This may support the quality of the
obtained solutions in terms of the well-distribution of the dominating nodes over
the graph. Figure 8 also shows the close performance of the two proposed meth-
ods in calculating the approximate domination numbers. Finally, the processing
time of the SA-MCDS method is slightly smaller than that of the MA-MCDS
method for the large size networks as reported in Fig. 8. This could be expected
since the SA-MCDS method is a single-solution search method while the MA-
MCDS method is a population-based search method.

Table 9   Rank-sum test for comparison results in Tables 5, 6, 7 and 8

Comparing Criteria Compared Methods R
−

R
+ p-value Best Method

Avg. GA MA-MCDS 0 105 7.425 × 10−6 MA-MCDS
SLS SA-MCDS 0 105 0.1349 –
MA-MCDS SA-MCDS 70.5 335.5 0.6223 –

Hits(%) GA MA-MCDS 105 0 1.2125 × 10−6 MA-MCDS
SLS SA-MCDS 105 0 2.215 × 10−6 SA-MCDS
MA-MCDS SA-MCDS 337 69 1.1381 × 10−4 SA-MCDS

f-Evals. MA-MCDS SA-MCDS 0 406 1.4041 × 10−10 SA-MCDS

www.manaraa.com

677

1 3

Journal of Network and Systems Management (2019) 27:647–687	

8.4 � Determining Backbone Nodes in a Static Wireless Sensors Network

In this section, we study the performance comparison of the two proposed algo-
rithms MA-MCDS and SA-MCDS to identify backbone nodes in a static wireless
sensors network. In addition, our two proposed algorithms are compared with six
benchmark methods presented in [4, 25, 52] through two main experiments. In
these experiments, the compared data of the benchmark methods are taken from
their original references. The main reasons for doing two different experiments is
that the compared performance measures and availability of the compared data
are different between the compared benchmark methods. In the fist experiment,
we measure the size of the connected dominating set produced by MA-MCDS

Networks Net1 - Net8
0

5

10

15

20

25

30
U

nw
ei

gh
te

d
D

ia
m

et
er

s
Average Unweighted Diameters

MA-MCDS Unweighted Diameters
SA-MCDS Unweighted Diameters
Whole Graph Unweighted Diameters

Networks Net1 - Net8
0

500
1000
1500
2000
2500
3000
3500
4000
4500

W
ei

gh
te

d
D

ia
m

et
er

s

Average Weighted Diameters

MA-MCDS Weighted Diameters
SA-MCDS Weighted Diameters
Whole Graph Weighted Diameters

Networks Net1 - Net8
0

5

10

15

20

25

N
od

e
D

eg
re

es

Average Node Degrees

MA-MCDS - Dominating Set
SA-MCDS - Dominating Set
Whole Graph

Networks Net1 - Net8
0

10

20

30

40

50

60

N
od

e
D

eg
re

es

Minimum & Maximum Node Degrees
MA-MCDS - Minimum Node Degrees
SA-MCDS - Minimum Node Degrees
Whole Graph Minimum Node Degrees
MA-MCDS - Maximum Node Degrees
SA-MCDS - Maximum Node Degrees
Whole Graph Maximum Node Degrees

Networks Net1 - Net8
0

50

100

150

D
om

in
at

io
n

N
um

be
rs

Averages of Approximate Domination

MA-MCDS
SA-MCDS

Networks Net1 - Net8
0

500

1000

1500

P
ro

ce
ss

in
g

Ti
m

es
 (i

n
se

co
nd

s) Average Processing Time

MA-MCDS
SA-MCDS

 Numbers

Fig. 8   Other metrics comparisons between MA-MCDS and SA-MCDS on graphs Net1 – Net8

www.manaraa.com

678	 Journal of Network and Systems Management (2019) 27:647–687

1 3

and SA-MCDS, and compare them with those produced by the three methods;
New1 and New2 [4] and MCDS [51]. Figure 9 shows comparison results that has
been done using the following parameters.

•	 N: The number of nodes in the network.
•	 D: The number of backbone nodes (the size of the connected dominating set)

in the network.
•	 r: The radius of nodes’ transmission range.

The authors of [4] gave several experimental results comparing New1, New2 and
MCDS methods in terms of size of backbone nodes. Experimental results in [4]
show that New2 is better than both New1 and MCDS algorithms at relatively
small values for r, for example, r = 25, 50 . On the other hand, MCDS method out-
performs New1 and New2 methods when the r value is large, for example, r = 75 .
Therefore, we paid more attention to New2 and MCDS methods.

In our experiments, we assigned three different values: 25,50,75 to the radius
of the network nodes’ transmission range r. For each value of r, we change the

0 20 40 60 80 100
0

20

40

60

80

100

No. of nodes

N
o.

 o
f b

ac
kb

on
e

no
de

s
(a) r = 25

New1
New2
MCDS
MA−MCDS
SA−MCDS

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

No. of nodes

N
o.

 o
f b

ac
kb

on
e

no
de

s

(b) r = 50

New1
New2
MCDS
MA−MCDS
SA−MCDS

0 10 20 30 40 50 60
0

10

20

30

40

50

60

No. of nodes

N
o.

 o
f b

ac
kb

on
e

no
de

s

(c) r = 75

New1
New2
MCDS
MA−MCDS
SA−MCDS

Fig. 9   Average number of backbone nodes relative to the number of nodes

www.manaraa.com

679

1 3

Journal of Network and Systems Management (2019) 27:647–687	

number of nodes N from 10 to 100. For each N, MA-MCDS and SA-MCDS have
the same number of runs for each graph, which is 20 times, while other two meth-
ods have 1000 times [4]. The experimental results of each algorithm are averaged.
We compare all methods in terms of number of backbone nodes generated with
each them. Thus, a better result is obtained when the backbone is of minimum
cardinality.

Results of this comparison are demonstrated in Fig. 9 to show number of back-
bone nodes against number of nodes in the network for different values of radius r.
It is clear that the performance of our proposed MA-MCDS and SA-MCDS methods
outperform other methods, and particularly the SA-MCDS method outperforms all
methods.

By Inspecting Fig. 9c we see that, when the transmission radius r is large (rela-
tive to the area), the MA-MCDS and SA-MCDS algorithms perform closely to each
other. On the other hand, When the transmission radius become small, as shown in
Fig. 9a, b, our two methods perform better than other methods. In Fig. 9a, we can
clearly see that there is a gap between SA-MCDS and the other methods.

Additionally, experimental results shown in Figs. 10 and 11 indicate that the
two proposed methods could obtain MCDS as a virtual backbone of a static wire-
less sensors network. It is clear that SA-MCDS gives a better backbone when
r = 25,N = 40 , however, the two methods produce the same results when
r = 50,N = 20.

The final comparison experiment is to test our results with network instances
described in Table 2. Table 10 shows the comparison results obtained by the pro-
posed methods against the following methods:

•	 GRASP for connected dominating set problems [25].
•	 Ant colony optimization algorithms for the minimum connected dominating set

problem: ACO and ACO+PCS [52].

r = 50, N = 20 r = 25 & N = 40

Fig. 10   Examples of obtaining backbone using MA-MCDS

www.manaraa.com

680	 Journal of Network and Systems Management (2019) 27:647–687

1 3

Table 10 presents the minimum and average values of the MCDS obtained by the
proposed methods and the above-mentioned methods. According to the signifi-
cance test by rank-sum test shown in Table 11, there is no significant difference at
level 0.05 between the results of the compared methods shown in Table 10. How-
ever, by careful investigation of the results shown in Table 10, we can generally
conclude that our two proposed methods perform the best for network instances
with large number of wireless nodes. Figure 12 shows the comparison results of
different methods in big-size networks. Although our proposed methods perfor-
mance is almost the same as other methods, other methods are slightly better in
big ranges of small size networks. Consequently, we can claim that our two meth-
ods are more practical than others in wireless networks design and management.
Specifically in wireless sensor networks, typically we have a large number of sen-
sors in unit area. Conserving energy/battery consumption is of essence here, so
finding small number of wireless sensors who are responsible for communica-
tions and controlling other wireless sensor nodes is crucial. Hence, our methods
are more suitable for wireless sensor networks design and management.

A node density in a network can be defined as the density distribution of other
nodes around a each node. The following relation can estimate the average num-
ber of nodes within the range of each node in a graph which may be used as an
approximation of the node degree.

where r, L and N are the range, area length and number of nodes, respectively, as
shown in Table 2. In Eq. 4, the numerator represents the range area of each nodes,
while the denominator uniformly estimates area per node. Finding a MCDS in low

(4)� =
�r2

L2∕N
,

r = 50, N = 20 r = 25 & N = 40

Fig. 11   Examples of obtaining backbone using SA-MCDS

www.manaraa.com

681

1 3

Journal of Network and Systems Management (2019) 27:647–687	

Table 10   Comparison results for network clustering

Network ACO ACO+PCS GRASP MA-MCDS SA-MCDS

ID Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Net1
60

20 21.6 19 21.2 19 19.8 17 18.0 13 18.0

Net1
70

16 17.0 15 16.2 14 15.1 15 15.3 15 15.4

Net1
80

12 14.0 12 13.1 12 12.0 11 11.9 12 13.2

Net1
90

11 11.8 11 11.6 10 10.6 11 11.7 11 11.9

Net1
100

8 9.0 8 8.9 8 8.2 10 11.2 10 10.8

Net1
110

8 8.5 8 8.5 7 7.8 8 8.4 9 13.4

Net1
120

7 7.5 7 7.2 6 6.1 8 8.9 8 8.9

Net2
80

23 24.7 22 23.6 22 22.9 14 15.5 15 16.8

Net2
90

22 23.8 21 23.6 20 20.7 18 19.4 19 21.7

Net2
100

17 20.0 17 19.0 17 17.9 18 19.4 17 19.7

Net2
110

15 17.2 15 16.8 15 15.9 18 20.9 20 20.9

Net2
120

15 16.2 14 15.5 13 13.8 14 14.6 13 14.4

Net3
70

46 50.7 46 49.6 45 46.5 36 37.3 37 38.9

Net3
80

41 43.7 41 43.9 35 37.5 35 37.4 37 39.5

Net3
90

34 36.0 33 35.7 30 30.9 34 34.9 35 35.9

Net3
100

28 30.8 23 31.0 25 25.8 29 31.4 30 33.4

Net3
110

23 27.4 22 26.4 22 22.7 28 30.0 28 29.4

Net3
120

21 23.6 21 23.4 18 19.1 27 27.8 25 27.8

Net4
100

46 50.7 46 49.6 45 46.5 33 34.4 34 35.2

Net4
110

43 44.9 42 44.8 37 39.5 39 40.6 38 40.3

Net4
120

37 39.9 37 39.8 34 35.4 34 34.8 35 35.9

Net4
130

32 34.7 32 34.9 29 30.5 35 35.8 36 37.8

Net4
140

30 31.3 29 31.3 25 34.3 33 33.6 34 35.3

Net4
150

28 29.6 26 28.8 23 24.3 29 30.8 30 33.8

Net4
160

24 26.6 25 26.5 22 22.3 30 30.8 28 30.9

Net5
130

60 64.5 60 64.3 57 58.6 43 48.6 46 48.2

Net5
140

53 57.2 52 57.0 50 52.3 47 50.5 49 49.8

Net5
150

51 54.9 51 54.4 46 48.5 43 44.2 35 45.9

Net5
160

47 50.5 45 49.8 43 43.7 41 41.6 41 42.8

Net6
200

55 58.6 52 58.8 49 50.4 59 61.5 56 63.6

Net6
210

51 53.5 50 52.8 45 46.1 43 46.8 45 47.9

Net6
220

47 48.9 45 48.4 40 42.1 48 49.2 47 49.1

Net6
230

44 47.5 44 46.9 39 39.8 43 44.9 45 46.8

Net7
200

79 82.0 79 81.5 73 75.4 54 56.2 57 58.5

Net7
210

75 79.1 74 78.2 67 70.0 64 69.2 66 67.9

Net7
220

68 72.6 69 73.8 62 67.0 61 64.4 62 64.5

Net7
230

66 69.2 66 68.9 59 60.9 55 57.7 55 55.6

Net8
210

99 101.6 98 104.0 90 94.7 70 75.0 70 75.5

Net8
220

88 95.4 91 97.6 82 87.9 73 77.3 74 79.8

www.manaraa.com

682	 Journal of Network and Systems Management (2019) 27:647–687

1 3

density networks is harder than the high density ones since the average number of
dominated nodes by a MCDS member is decreased.

Figure 13 shows that the proposed methods could obtained better results than
the other compared methods. Specifically, both of MA-MCDS and SA-MCDS
could obtain better results in 21 out of 23 graphs with low density of node
distributions.

Table 10   (continued)

Network ACO ACO+PCS GRASP MA-MCDS SA-MCDS

ID Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Net8
230

86 91.4 86 90.3 78 81.6 69 70.8 71 72.1

Net8
240

82 85.8 80 84.1 74 76.1 65 68.0 67 72.3
Overall Avg. 40.44 43.27 39.85 42.97 36.76 38.57 35.66 37.58 35.98 38.52

Table 11   Rank-sum test for
comparison results in Table 10

Compared methods R
−

R
+ p value Best method

MA-MCDS ACO 665 196 0.5221 –
MA-MCDS ACO+PCS 622.5 235.5 0.6002 –
MA-MCDS GRASP 467 394 0.9482 –
SA-MCDS ACO 653.5 207.5 0.5683 –
SA-MCDS ACO+PCS 609.5 251.5 0.6561 –
SA-MCDS GRASP 443.5 417.5 0.9889 –
MA-MCDS SA-MCDS 591 270 0.8783 –

Fig. 12   Compared results for big-size networks

www.manaraa.com

683

1 3

Journal of Network and Systems Management (2019) 27:647–687	

9 � Conclusion

In this paper, we investigated the minimum connected dominating set problem.
We proposed two new algorithms to solve the MCDS problem: the first algorithm
is called Memetic Algorithm for solving MCDS problem (MA-MCDS), and the
second algorithm is called Simulated Annealing for solving MCDS problem (SA-
MCDS). Also, we presented a new objective function to be used by both algorithms
to achieve a better performance. In addition, we tested the proposed algorithms and
applied them to identify the network virtual backbone structure in static wireless
sensors networks by reformulating them to the minimum connected dominating set
problem. Our experimental results on different standard benchmark test graphs show
the efficiency of the proposed algorithms especially SA-MCDS. Test results demon-
strated that both MA-MCDS and SA-MCDS are very efficient in terms of computa-
tional costs and solution quality to compute and identify MCDS.

The proposed methods can be extended by enhancing the filtering and connect-
ing procedures as future works. Specifically, the filtering procedure can be enhanced
by studying the relations between nodes to be removed. In addition, the connect-
ing procedure can be enhanced by studying relations between solution connected
components.

Acknowledgements  This work was funded by the Scientific Research Deanship at Umm Al-Qura Uni-
versity, the Kingdom of Saudi Arabia, Award Project Number (43508016). The authors would like to
express their sincere gratitude to the anonymous referees and the editors for their useful and valuable
comments and suggestions to improve the quality of the paper.

References

	 1.	 Gao, X., Zhu, X., Li, J., Fan, W., Chen, G., Ding-Zhu, D., Tang, S.: A novel approximation for
multi-hop connected clustering problem in wireless networks. IEEE/ACM Trans. Netw. 25(4),
2223–2234 (2017)

	 2.	 Mohanty, J.P., Mandal, C., Reade, C.: Distributed construction of minimum connected dominating
set in wireless sensor network using two-hop information. Comput. Netw. 123, 137–152 (2017)

Fig. 13   Compared results for low-density networks

www.manaraa.com

684	 Journal of Network and Systems Management (2019) 27:647–687

1 3

	 3.	 Mohanty, J.P., Mandal, C., Reade, C., Das, A.: Construction of minimum connected dominating set
in wireless sensor networks using pseudo dominating set. Ad Hoc Netw. 42, 61–73 (2016)

	 4.	 Narasimha Raghavan, V., Arvind Ranganath, R., Bharath, N., Khan, M.F.: Simple and efficient
backbone algorithm for calculating connected dominating set in wireless adhoc networks. Int. J.
Electron. Circuits Syst. 1(3), 3–18 (2007)

	 5.	 Thai, M.T., Tiwari, R., Du, D.-Z.: On construction of virtual backbone in wireless ad hoc networks
with unidirectional links. IEEE Trans. Mobile Comput. 7(9), 1098–1109 (2008)

	 6.	 Torkestani, J.A., Meybodi, M.R.: An intelligent backbone formation algorithm for wireless ad hoc
networks based on distributed learning automata. Comput. Netw. 54(5), 826–843 (2010)

	 7.	 Wan, P.-J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in
wireless ad hoc networks. In: Proceedings INFOCOM 2002. Twenty-First Annual Joint Conference
of the IEEE Computer and Communications Societies, vol. 3, pp. 1597–1604. IEEE (2002)

	 8.	 Yu, F., Xia, X., Li, W., Tao, J., Ma, L., Cai, Z.-Q.: Critical node identification for complex network
based on a novel minimum connected dominating set. Soft Comput. 21, 1–9 (2016)

	 9.	 Fahong, Y., Xia, X., Li, W., Tao, J., Ma, L., Cai, Z.: Critical node identification for complex network
based on a novel minimum connected dominating set. Soft Comput. 21(19), 5621–5629 (2017)

	10.	 Paradis, L., Han, Q.: A survey of fault management in wireless sensor networks. J. Netw. Syst.
Manag. 15(2), 171–190 (2007)

	11.	 Ferreira, C., Guardalben, L., Gomes, T., Sargento, S., Salvador, P., Robalo, D., Velez, F.J.: Support-
ing unified distributed management and autonomic decisions: design, implementation and deploy-
ment. J. Netw. Syst. Manag. 25(2), 416–456 (2017)

	12.	 Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. CRC Press, Boca
Raton (1998)

	13.	 Michael, R.G., David, S.J.: Computers and Intractability: A Guide to the Theory of np-Complete-
ness. WH Freeman & Co., San Francisco (1979)

	14.	 Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Springer, Berlin (2003)
	15.	 Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evolut.

Comput. 12(3), 303–325 (2004)
	16.	 Aarts, E., Korst, J.: Selected topics in simulated annealing. In: Ribeiro, C.C., Hansen, P. (eds.)

Essays and Surveys in Metaheuristics, pp. 1–37. Springer, Berlin (2002)
	17.	 Hedar, A.-R., Fukushima, M.: Heuristic pattern search and its hybridization with simulated anneal-

ing for nonlinear global optimization. Optim. Methods Softw. 19(3–4), 291–308 (2004)
	18.	 Hedar, A.-R., Fukushima, M.: Derivative-free filter simulated annealing method for constrained

continuous global optimization. J. Glob. Optim. 35(4), 521–549 (2006)
	19.	 Kirkpatrick, S., Vecchi, M.P., et al.: Optimization by simmulated annealing. Science 220(4598),

671–680 (1983)
	20.	 Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Burke, E.K. (ed.) Search Methodologies,

pp. 187–210. Springer, Berlin (2005)
	21.	 Hedar, A.-R., Fukushima, M.: Hybrid simulated annealing and direct search method for nonlinear

unconstrained global optimization. Optim. Methods Softw. 17(5), 891–912 (2002)
	22.	 Moscato, P., et al.: On genetic crossover operators for relative order preservation. C3P Report, pp.

778 (1989)
	23.	 Pastorino, M., Caorsi, S., Massa, A., Randazzo, A.: Reconstruction algorithms for electromagnetic

imaging. IEEE Trans. Instrum. Meas. 53(3), 692–699 (2004)
	24.	 Hedar, A.-R., Ismail, R.: Hybrid genetic algorithm for minimum dominating set problem. In: Com-

putational Science and Its Applications–ICCSA 2010, pp. 457–467. Springer, Berlin (2010)
	25.	 Li, R., Hu, S., Gao, J., Zhou, Y., Wang, Y., Yin, M.: Grasp for connected dominating set problems.

Neural Comput. Appl. 28, 1–9 (2016)
	26.	 Misra, R., Mandal, C.: Minimum connected dominating set using a collaborative cover heuristic for

ad hoc sensor networks. IEEE Trans. Parallel Distrib. Syst. 21(3), 292–302 (2010)
	27.	 Yadav, A.K., Yadav, R.S., Singh, R., Singh, A.K.: Connected dominating set for wireless ad hoc

networks: a survey. Int. J. Eng. Syst. Modell. Simul. 7(1), 22–34 (2014)
	28.	 Coelho, R.S., Moura, P.F.S., Wakabayashi, Y.: The k-hop connected dominating set problem: hard-

ness and polyhedra. Electron. Notes Discrete Math. 50, 59–64 (2015)
	29.	 Hongjie, D., Ding, L., Weili, W., Kim, D., Pardalos, P.M., Willson, J.: Connected dominating set in

wireless networks. In: Pardalos, P.M., Du, D.-Z., Graham, R.L. (eds.) Handbook of Combinatorial
Optimization, pp. 783–833. Springer, Berlin (2013)

www.manaraa.com

685

1 3

Journal of Network and Systems Management (2019) 27:647–687	

	30.	 Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network
design. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, pp.
365–372 (2003)

	31.	 Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorith-
mica 40(4), 245–269 (2004)

	32.	 Cheng, X., Ding, M., Chen, D.: An approximation algorithm for connected dominating set in ad hoc
networks. In: Proceedings of International Workshop on Theoretical Aspects of Wireless Ad Hoc,
Sensor, and Peer-to-Peer Networks (TAWN) (2004)

	33.	 Jie, W., Dai, F.: A generic distributed broadcast scheme in ad hoc wireless networks. IEEE Trans.
Comput. 53(10), 1343–1354 (2004)

	34.	 Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent
developments and potential synergies. J. Supercomput. 68(1), 1–48 (2014)

	35.	 Hongwei, D., Ye, Q., Weili, W., Lee, W., Li, D., Dingzhu, D., Howard, S.: Constant approximation
for virtual backbone construction with guaranteed routing cost in wireless sensor networks. In: 2011
Proceedings IEEE INFOCOM, pp. 1737–1744. IEEE (2011)

	36.	 Ren, S., Yi, P., Lin, Z., Guo, C., Wu, Y.: Constructing minimum connected dominating sets with
constant update time in wireless ad-hoc sensor networks. In: 2014 IEEE 17th International Confer-
ence on Computational Science and Engineering (CSE), pp. 1570–1576. IEEE (2014)

	37.	 Ren, S., Yi, P., Hong, D., Wu, Y., Zhu, T.: Distributed construction of connected dominating sets
optimized by minimum-weight spanning tree in wireless ad-hoc sensor networks. In: 2014 IEEE
17th International Conference on Computational Science and Engineering (CSE), pp. 901–908.
IEEE (2014)

	38.	 Kim, D., Yiwei, W., Li, Y., Zou, F., Ding-Zhu, D.: Constructing minimum connected dominating
sets with bounded diameters in wireless networks. IEEE Trans. Parallel Distrib. Syst. 20(2), 147–
157 (2009)

	39.	 Wang, L., Wan, P.-J., Yao, F.: Minimum cds in multihop wireless networks with disparate communi-
cation ranges. IEEE Trans. Mobile Comput. 1(3), 162–168 (2013)

	40.	 Mohanty, J.P., Mandal, C.: A distributed greedy algorithm for construction of minimum connected
dominating set in wireless sensor network. In: Applications and Innovations in Mobile Computing
(AIMoC), 2014, pp. 104–110. IEEE (2014)

	41.	 Kui, X., Wang, J., Zhang, S.: A data gathering algorithm based on energy-balanced connected domi-
nating sets in wireless sensor networks. In: 2013 IEEE Wireless Communications and Networking
Conference (WCNC), pp. 1139–1144. IEEE (2013)

	42.	 Malatras, A., Hadjiantonis, A.M., Pavlou, G.: Exploiting context-awareness for the autonomic man-
agement of mobile ad hoc networks. J. Netw. Syst. Manag. 15(1), 29–55 (2007)

	43.	 Aoun, B., Boutaba, R.: Clustering in wsn with latency and energy consumption constraints. J. Netw.
Syst. Manag. 14(3), 415–439 (2006)

	44.	 Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica
20(4), 374–387 (1998)

	45.	 Ruan, L., Hongwei, D., Jia, X., Weili, W., Li, Y., Ko, K.-I.: A greedy approximation for minimum
connected dominating sets. Theor. Comput. Sci. 329(1–3), 325–330 (2004)

	46.	 Weili, W., Hongwei, D., Jia, X., Li, Y., Huang, S.C.-H.: Minimum connected dominating sets and
maximal independent sets in unit disk graphs. Theor. Comput. Sci. 352(1–3), 1–7 (2006)

	47.	 Kamei, S., Kakugawa, H.: A self-stabilizing 6-approximation for the minimum connected dominat-
ing set with safe convergence in unit disk graphs. Theor. Comput. Sci. 428, 80–90 (2012)

	48.	 Dai, F., Jie, W.: On constructing k-connected k-dominating set in wireless ad hoc and sensor net-
works. J. Parallel Distrib. Comput. 66(7), 947–958 (2006)

	49.	 Das, B., Sivakumar, R., Bharghavan, V.: Routing in ad hoc networks using a spine. In: Proceed-
ings Sixth International Conference on Computer Communications and Networks, 1997, pp. 34–39.
IEEE (1997)

	50.	 Wu, J., Li, H.: On calculating connected dominating set forefficient routing in ad hoc wireless net-
works. In Proceedings of the 3rd International Workshop on Discrete Algorithms and Methods for
Mobile Computing and Communications, pp. 7–14. ACM (1999)

	51.	 Das, B., Sivakumar, R., Bharghavan, V.: Routing in ad-hoc network using a virtual backbone. Proc.
ACM SIGCOMM 97, 1–20 (1997)

	52.	 Jovanovic, R., Tuba, M.: Ant colony optimization algorithm with pheromone correction strategy for
the minimum connected dominating set problem. Comput. Sci. Inf. Syst. 10(1), 133–149 (2013)

www.manaraa.com

686	 Journal of Network and Systems Management (2019) 27:647–687

1 3

	53.	 Dagdeviren, Z.A., Aydin, D., Cinsdikici, M.: Two population-based optimization algorithms for
minimum weight connected dominating set problem. Appl. Soft Comput. 59, 644–658 (2017)

	54.	 Kumar, G., Rai, M.K.: An energy efficient and optimized load balanced localization method using
cds with one-hop neighbourhood and genetic algorithm in wsns. J. Netw. Comput. Appl. 78, 73–82
(2017)

	55.	 Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, Hoboken
(2001)

	56.	 Baker, J.E.: Adaptive selection methods for genetic algorithms. In Proceedings of an International
Conference on Genetic Algorithms and Their Applications, pp. 101–111. ACM, Hillsdale (1985)

	57.	 Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators and tools
for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

	58.	 Hedar, A.-R., Ismail, R., El Sayed, G.A., Khayyat, : K.M.J.: Two meta-heuristics for the minimum
connected dominating set problem with an application in wireless networks. In 2015 3rd Interna-
tional Conference on Applied Computing and Information Technology/2nd International Confer-
ence on Computational Science and Intelligence (ACIT-CSI), pp. 355–362. IEEE (2015)

	59.	 Hedar, A.-R., Ismail, R.: Simulated annealing with stochastic local search for minimum dominating
set problem. Int. J. Mach. Learn. Cybern. 3(2), 97–109 (2012)

	60.	 Sanchis, L.A.: Experimental analysis of heuristic algorithms for the dominating set problem. Algo-
rithmica 33(1), 3–18 (2002)

	61.	 García, S., Fernández, A., Luengo, J., Herrera, F.: A study of statistical techniques and performance
measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13(10),
959–977 (2009)

	62.	 Sheskin, David J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press,
Boca Raton (2003)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Abdel‑Rahman Hedar  holds a Doctor of Informatics degree from Kyoto University, Japan in 2004. He
also received his B.Sc. and M.Sc. (Mathematics) from Assiut University, Egypt in 1993 and 1997, respec-
tively. He is currently an associate professor at Computer Science Department in Jamoum, Umm Al-Qura
University, Makkah, Saudi Arabia. He is also an associate professor of artificial intelligence in Assiut
University since January 2012. His research includes meta-heuristics, global optimization, machine
learning, data mining, bioinformatics, graph theory and parallel programming. He has published over 70
papers in international journals and conferences. From July 2005 to July 2007, he was a JSPS research
fellow in Kyoto University, Japan.

Rashad Ismail  is an assistant professor at King Khalid University, Saudi Arabia. He obtained his Ph.D.
in Scientific Computing from Assiut University, Egypt, 2011, M.Sc. from University of Damascus, Syria,
2007, and B.Sc. in Mathematics from University of Taiz, Yemen, 1998. Research interests include Graph
theory and its Applications, the Minimum Dominating Set Problem, Maximum Independent Set Problem,
Maximum Cliques and the Minimum Spanning Tree and Fuzzy graph.

Gamal A. El‑Sayed  is currently an assistant professor at Umm Al-Qura University, Saudi Arabia, and
Assiut University, Egypt (on leave). He received his Ph.D. degree in Computer Engineering from Univer-
sity of Connecticut, USA. His research interests include distributed computing/systems, wireless sensor
networks deployment/management, fault-tolerance, pervasive computing, high performance computing,
and real-time systems.

Khalid M. Jamil Khayyat  received his Ph.D. degree in electrical and computer engineering from Univer-
sity of Victoria, Canada. He also received his master degree form Colorado State University, USA, and
his B.Sc. from Umm Al-Qura University, Saudi Arabia. He is now an assistant professor at Umm Al-Qura
University, Saudi Arabia. His research interests are computer networks performance modelling, wireless
ad hoc networks, wireless sensor networks and wireless applications.

www.manaraa.com

687

1 3

Journal of Network and Systems Management (2019) 27:647–687	

Affiliations

Abdel‑Rahman Hedar1,2  · Rashad Ismail3,4 · Gamal A. El‑Sayed1,5 ·
Khalid M. Jamil Khayyat6

	 Rashad Ismail
	 rismail@kku.edu.sa

	 Gamal A. El‑Sayed
	 gaelsayed@uqu.edu.sa; gamal@eng.au.edu.eg

	 Khalid M. Jamil Khayyat
	 kmkhayyat@uqu.edu.sa

1	 Present Address: Department of Computer Science in Jamoum, Umm Al-Qura University,
Makkah 25371, Saudi Arabia

2	 Department of Computer Science, Assiut University, Assiut 71526, Egypt
3	 Department of Mathematics and Computer Science, Ibb University, Ibb 70270, Yemen
4	 Present Address: Department of Mathematics, King Khalid University, 61913 Mohail Assir,

Saudi Arabia
5	 Department of Electrical Engineering, Assiut University, Assiut 71516, Egypt
6	 Department of Computer Engineering, Umm Al-Qura University, Makkah 24381, Saudi Arabia

http://orcid.org/0000-0002-9936-5987

www.manaraa.com

Journal of Network & Systems Management is a copyright of Springer, 2019. All Rights
Reserved.

	Two Meta-Heuristics Designed to Solve the Minimum Connected Dominating Set Problem for Wireless Networks Design and Management
	Abstract
	1 Introduction
	2 Minimum Connected Dominating Set Problem
	3 Related Work
	3.1 Virtual Backbone of Wireless Networks
	3.2 Theoretical Studies
	3.3 Heuristic Studies

	4 Solution Representation and Evaluation
	4.1 Solution Representation
	4.2 Solution Evaluation

	5 Memetic Algorithm for the MCDS Problem
	5.1 Genetic Operations
	5.2 Intensification Schemes
	5.2.1 Local Search
	5.2.2 Filtering Search
	5.2.3 Solution Connecting
	5.2.4 Elite Inspiration

	5.3 MA-MCDS Algorithm

	6 Simulated Annealing for the MCDS Problem
	6.1 Stochastic Local Search
	6.2 SA-MCDS Algorithm

	7 Experimental Setup
	7.1 Test Problems
	7.1.1 Test Graphs
	7.1.2 Network Graphs

	7.2 Parameters Setting
	7.2.1 MA-MCDS Parameters
	7.2.2 SA-MCDS Parameters
	7.2.3 Objective Function Weights

	7.3 Procedural Analysis

	8 Numerical Results
	8.1 Performance Comparison of MA-MCDS and GA for Graphs
	8.2 Performance Comparison of SLS and SA-MCDS for Graphs
	8.3 Performance Comparison of MA-MCDS and SA-MCDS
	8.4 Determining Backbone Nodes in a Static Wireless Sensors Network

	9 Conclusion
	Acknowledgements
	References

